实用技术

电位分析法测定乳酸的含量

陈正行

(粮油科学与工程系)

0 引 言

乳酸一般由淀粉、葡萄糖、马铃薯等原料经发酵法制得。目前,成品乳酸含量的测定主要依据国家标准方法 GB2023-80^[1]. 用该方法测定样品时,酚酞为指示剂,用硫酸标准溶液滴定至样品溶液由红色变成无色即为终点。因滴定终点的确定依靠指示剂的变色来判断,则人眼对颜色的敏感程度就显的特别重要。由于人眼对红色十分敏感,故酚酞作为指示剂碱滴定酸,溶液由无色变成微红色时,很容易观察出来,测定误差很小;而酸滴定碱时,溶液由几乎不呈红色到无色之间的颜色变化,依靠人眼观察就十分困难,滴定终点难以确定,造成测定误差较大;此外,指示剂的用量对指示剂的变色范围有影响,如酚酞用量减少,会在较高pH值时变色;不同的人对颜色的敏感程度也是有差别的,即使同一个人对同一强度的颜色作多次判断时,也会产生误差。Magallanes J F 和 Johansson A 等人也已报道过这种测定方法的误差是较大的^[2,3]。这种误差也往往引起生产厂家对乳酸含量的争议。因此,作者研究了应用电位分析法测定乳酸的含量。

1 基本原理

电位分析无需任何指示剂,滴定终点是根据电位的"突跃"或测定终点电位的设定来判断,即用仪器代替人眼对颜色的观察,因而大大降低了测定误差。

当用 NaOH 标准溶液测定乳酸时,发生

反应,滴定终点时,溶液中全部 CH₃CHOHCOOH 被中和生成 CH₃CHOHCOONa. 但由于 CH₃CHOHCOO-为弱碱,根据它在溶液中的离解平衡,可求得溶液中的OH⁻浓度。

收稿日期:1993-11-21

已知
$$[OH^-] = \sqrt{K_bC}$$

式中 $K_b = \frac{K_w}{K_a}$, $K_w = 1.00 \times 10^{-14}$, $K_a = 1.40 \times 10^{-4}$.

假设 C = 0.05 mol/L,为滴定终点时 $CH_3CHOHCOO^-$ 的浓度。

則
$$[OH^-] = \sqrt{K_b C} = \sqrt{\frac{K_w}{K_a} \cdot C} = \sqrt{\frac{10^{-14}}{1.40 \times 10^{-4}} \times 0.05} = 1.89 \times 10^{-6} \text{ mol/L}$$

$$pOH = \lg \frac{1}{[OH^-]} = \lg \frac{1}{1.89 \times 10^{-6}} = 5.72$$

$$pH = 14 - pOH = 14 - 5.72 = 8.28$$

即滴定终点 pH 值为 8. 28. 可见等当点 pH 值大于 7,溶液显碱性。图 1 为实际滴定 的曲线,可以看出实际滴定的等当点 pH 值与计算值一致,滴定曲线的"突跃"范围也在 4 个 pH 值单位以上,即在等当点附近,NaOH 滴定体积的微量增加,便会引起溶液 pH 值的强烈改变。因此,电位分析法测定乳酸含量具有很高的准确度和精密度。

分析乳酸含量时,应当注意:高浓度的 乳酸在存放过程中能缩合成酯,成平衡状态^[4,5],由两分子乳酸缩合而成的称为乳酰 乳酸,再脱水则成丙交酯。

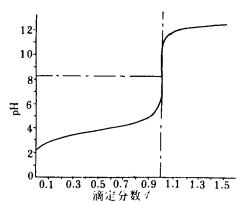


图 1 0.1mol/L NaOH 滴定 0.1mol/L CH₃CHOHCOOH 的滴定曲线

此外尚发生多分子间的缩合反应。这些缩合物总称为乳酸酐。如用水稀释,长期放置或加碱后加热,则又回复成乳酸。因此,不能用强碱直接滴定来测定乳酸和乳酸酐混合物总乳酸的含量,而须用返滴定法。先将试样加入过量的 NaOH 标准液,加热后使乳酸酐水解为乳酸,并与碱反应完全,然后用强酸标准溶液滴定过量的碱。

2 材料和方法

2.1 材料

食用乳酸,苏州乳酸厂提供,含量≥80%.

2.2 方法

2.2.1 国标法[1]

2. 2. 2 电位分析法 称取 1g 试样(准确至 0.0002g),加蒸馏水 40ml,准确加入 40ml0. 5mol/L NaOH 标准溶液,在电炉上微沸 5min,加 100ml 蒸馏水,置磁力搅拌器上,插入电极,用 0.25mol/L 硫酸标准溶液滴定,当酸度计显示 pH 值为 8.28 时,即为滴定终点(此时,溶液中 $CH_3CHOHCOO^-$ 的浓度非常接近于 0.05mol/L). 同时做一空白试验。

按下式计算乳酸含量:

乳酸(%) =
$$\frac{(V_2 - V_1) \times C_{H_2SO_4} \times 0.18016}{m} \times 100$$

式中

 V_2 ——空白滴定时用去硫酸标准溶液的体积(ml)

 V_1 ——试样滴定时用去硫酸标准溶液的体积(ml)

Сн, so. ——硫酸标准溶液的摩尔浓度

m ——称取样品质量(g)

0.18016 ---- 毎 mg 摩尔硫酸相当于乳酸的 g 数

3 结果和讨论

分别以电位分析法和 GB2023-80 法测定乳酸含量,各测定样品 10 次,考察分析方法的可靠性,结果见表 1.

700000000000000000000000000000000000000								
測定方法 电位 分析法	測 定 值 (%)					平均测 定值(%)	相对平均 误差(%)	标准 偏差(%)
	79. 96	79.93	80. 02	79. 94 80. 02	80. 06 80. 04	80. 000	0. 630	0.062
77 07 124	80. 01 80. 42	79. 94 79. 97	80. 12 79. 95	79. 87	80. 72			
国标法	80. 97	80. 93	79.98	80. 49	80.71	80. 400	4.560	0.430

表 1 乳酸含量测定结果

表 1 表明:电位分析法的相对平均误差和标准偏差分别为 0.630%和 0.062%,远低于国标法的 4.560%相对平均误差和 0.430%标准偏差,说明电位分析法比国标法更准确和精密。如采用自动电位滴定装置,预先设定终点滴定电位,可实现滴定操作的自动化,使测定方法具有简便、快速、准确的特点。

参考文献

- 1 国家标准局. 中华人民共和国国家标准 GB2023-80
- 2 Magallanes J F, Caridi A F. Anal Chem Acfa, 1981, 133
- 3 Johansson A. Johansson S. Analyst. 1978. 103
- 4 Lyalckov Yu S, Klychkv Yu A. Theoretical Foundation of Modern Chemical Analysis, Mir Publishers Moscow, 1980
- 5 Willis C J. ibid, 1981, 58