M eso 四 -(3,5-二溴 -4 羟基苯) 卟啉光度法 检测食品包装材料铅污染

李在均 虞学俊 朱振中

(无锡轻工大学化工系,江苏无锡 214036)

摘要 研究了 Meso-四-(3,5-二溴-4羟基苯)卟啉 [T(DBHP)P]与铅的显色反应,建立了一种测定食品包装材料铅污染的分析方法。在 0.08 mol/L NaO H介质中,铅与 Meso-四-(3,5-二溴-4羟基苯)卟啉形成 1:2黄色配合物,最大吸收波长为 479 nm,表观摩尔吸光系 数为 2.2 10°.研究表明,体系中加入 8羟基喹啉和盐酸羟胺,既加快了显色反应速度,在常温下放置 5 min即可完成,又大大提高测定铅的选择性.能满足复杂体系中痕量铅的测定。

关键词 光度法;铅; Meso-四-(3,5-二溴-4-羟基苯)卟啉;食品包装材料分类号 TS201.2

0 前 言

铅是对人体有害的元素,我国食品卫生标准中对其铅的迁出有严格限量,食品包装材料是食品铅污染的主要来源之一,目前铅的化学分析普遍采用双硫腙光度法 $^{[1]}$,该方法最大的缺点是选择性差,需用剧毒试剂氰化钾掩蔽共存干扰元素,且操作繁琐。 $^{[1]}$ 的 $^{[2]}$ $^{[3]}$ $^{[3]}$ $^{[4]}$ $^{[5]}$ $^{[5]}$ $^{[5]}$ $^{[5]}$ $^{[6]}$

1 材料与方法

1.1 主要仪器与试剂

Beckman DU-7HS型分光光度计;72型分光光度计;

T(DBHP)P/DMF溶液(0.04%):将 0.100g T(DBHP)P(自制)溶于 250 mL N, N二甲基甲酰胺(DMF)中放置 2 d后使用。

 Pb^{2+} 铅标准溶液 (1 mg /mL): 将 0. 2691 g 光谱纯 PbO加热溶于 10 mL 2 mol /L的 HN O ph ,转移至 $250 \text{ mL容量瓶 ,用水稀释至刻度 . 工作时稀释成 } Pb^{2+} 10 \mu \text{ g /mL}.$

收稿日期: 1997-10-24

1.2 实验方法

在 $25~\rm mL$ 容量瓶中 ,加入不超过 $12\mu_{\rm g}$ 的 Pb^2 离子 ,然后依次加入 $1.~5~\rm mL$ $2\%~\rm HQ$, $1.~0~\rm mL$ 20% 盐 酸 羟 胺 , $1.~0~\rm mL$ $2~\rm mol$ /L NaO H, $2.~0~\rm mL$ $2\%~\rm Na_2\,SO_3$, $1.~0~\rm mL$ 0.~04% T(DBHP) P/DM F溶液 ,摇匀 ,放置 $5~\rm min$,再加入 $2.~5~\rm mL$ $6\%~\rm O$ P溶液 ,用去离子水稀释至刻度。以试剂空白为参比 ,用 $1~\rm cm$ 比色皿测量 $479~\rm nm$ 处的光密度。

2 结果与讨论

2.1 配合物吸收曲线

在 $0.08\,\mathrm{mL}$ $2\,\mathrm{mol}$ /LNaO H介质中,T(DBHP) P试 $0.6\,\mathrm{mL}$ 30.5 剂在 $445\,\mathrm{nm}$ 处有最大吸收,铅与试剂配合物的最大吸 $0.5\,\mathrm{mm}$ 收在 $479\,\mathrm{nm}$,对比度 $\Delta\lambda=34\,\mathrm{nm}$,见图 $1.\,\mathrm{mm}$ $0.6\,\mathrm{mm}$

2.2 试剂用量的影响

实验表明加入 2.0 mol/L NaOH 0.2~ 1.6 mL; 0.04% T(DBHP) P 0.8~ 2.0 mL; 2% 8羟基喹啉 1.0~ 2.5 mL; 盐酸羟胺 1~ 2 mL; 2% Na² SO³ 1~ 10 mL; 6% OP 0.5~ 5.0 mL时,配合物光密度最大且基本保持不变。实验采用加 1.0 mL NaOH , 1.0 mL T(DBHD) P 1.5 mL8 羟基喹啉 1 mL 盐酸羟胺 2.0 m

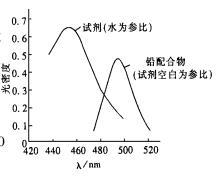


图 1 配合物吸收曲线

T(DBHP)P, 1.5 mL8羟基喹啉, 1 mL盐酸羟胺, 2.0 mL Na2 SO32.5 mL OP.

2.3 8羟基喹啉和盐酸羟胺的作用

加入 8羟基喹啉和盐酸羟胺对铅与 T(DBHP) P显色起催化作用 (尤其以 8羟基喹啉催化作用最为明显),使反应能在常温下 $5 \min$ 即可完成 ,又具有掩蔽作用,测定铅的选择性

大大改善,能适用于复杂体系中痕量铅的测定。 2.4 OP的作用

OP乳化剂主要起增敏作用,使显色反应的灵敏度提高*1*倍左右。

2.5 共存离子的影响

由于体系中 8 羟基喹啉和盐酸羟胺的掩蔽作用,使铅与 T(DBHP) P显色反应选择性较好,可不经分离直接测定样品中铅的含量 (共存离子允许量见表 1).

2.6 标准曲线的绘制、检出限和测定限

分别加入 2, 4, 6, 8, 10, $12\mu_g$ Pb²⁺ 于 25 mL容量瓶中,按实验方法显色,在 Beckman DU-7HS型或 72 型分光光度计上测 479 nm 处光密度,绘制标

μ,

			0
共存离子	允许量	共存离子	允许量
Cl	10 000	Zn ²⁺	1 000
Br^{-}	10 000	Cd ²⁺	300
Γ	10 000	K ⁺	10 000
$C_2O_4^{2-}$	25 000	N a ⁺	10 000
PO 3 -	5 000	M g ² ≠	100
SO ₄ -	10 000	Ca ²⁺	100
$NO_{\bar{3}}$	10 000	Ba³	100
Cr ³⁺	500	Sb³+	500
M n³-	100	Sn4+	200
Fe^{3}	500	Al³-	10 000
Co ²⁺	250	Bi ³⁺	100
Cu²+	100		

说明: 测定 $1G^{\mu}g$ Pb^{2+} /25m L,光密 度相对误差 小于士 5% 时 ,共存离子的允许量。

准曲线。其回归方程式为: A = 0.025+0.033C (其中 C为 25 mL溶液中铅的 μ_g 数)。

配置 11个相应的试剂空白溶液,按照 IU PA C规定 (K = 3)测定检出限和测定限 (K = 10) [3] 结果为: 检出限 $C_L = 24.9$ ng /m L,测定限 $C_Q = 83.2$ ng /m L.

3 样品分析

3.1 样品处理

根据文献^[2],食品包装材料容器铅的污染的情况是测定在一定条件下 4% 乙酸浸泡液中铅的浓度。具体处理方法如下:

- 1) 玻璃瓶检验: 将样瓶用水充分洗涤 ,然后注满加热到 60 $^{\circ}$ 的 4% 醋酸溶液 在 60 $^{\circ}$ 保 温 30 min,并经常摇动。
- 2) 包装纸: 每张纸样剪下 2 cm \times 5 cm 大小各 块 ,放入浸泡液中 (以每平方厘米加 2 mL 4% 乙酸浸泡液计算 ,纸条不要重叠) ,在不低于 20 ° 的常温下浸泡 24 h .
- 3) 铝制食具: 每批取 2件,分别加入 4% 乙酸至上边缘 0.5 cm 处,煮沸 30 min,加热时加盖,保持微沸,最后补充 4% 乙酸至原体积,室温放置 24 h.

3.2 样品分析

吸取按 3. I所制得的乙酸浸泡液 2~ 5 m L于 25 m L容量瓶中,按实验方法显色,以试剂空白液(试剂空白液中加入同样体积的 4% 乙酸溶液)为参比,用 1 cm 比色皿于 479 nm处测定光密度,在标准

表 2	杆品铅浓度测 正结果	mg/L

样 品	本法1)	原子吸收法
玻璃瓶	0. 502	0. 504
食品包装纸	1. 22	1. 20
铝制食具	0. 723	0.718

1) 平行测定 5次平均值

曲线上查出铅微克数,计算浸泡液中铅浓度。测定结果见表2

参 考 文 献

- 1 壬叔淳编. 食品卫生检验技术. 北京: 化学工业出版社,1994,46% 471
- 2 潘教麦,李在均,徐钟隽. Meso-四-(3,5-二溴-4羟基苯)卟啉 [T(DBHP)P 吸光光度法和二阶导数光度法测定铝合金中微量锌 理化检验 化学分册,1993,29(2)76~78
- 3 Chong-Gin Hsu, Xue-Dong Wang, Wan-Ru Chen. Second-derivative spectrophotometric demermination of scandium in rdre earth mixtures with chiorophonazo-P-CI(CPAPC). Microchemical Journal, 1989, 40 175~ 180

The Spectrophotometry Detection of the Pollution in Pack Materials for Food with Meso-Tetra-(3, 5-Dibromo-4-Ydroxylphenyl) Porphyrin

Li zaijun Yu xuejun Zhu Zh enzhong

(Department of Chemical Engineering, Wuxi University of Light Industry, Wuxi 214036)

Abstract A color reaction of lead with T(DBHP) P was studied in detail. The method of detection of the pollution of lead in pack materials for food has been developed. In 0.08 mol/L NaOH medium, lead reacted with T(DBHP) P to form a 1:2 yellow complex, which has maxium absorption peak at 479 nm, and the apparent molar absorptivity was found to be 2 × 10⁵. The selectivity and reaction rate were improved remarkably because of the presence of oxine and hydroxylamine hydrochloride. The method can be used to determine trace lead in complex samples.

Key words spectrophotometry; lead; meso-tetra-(3, 5-dibromo-4-ydroxylphenyl) porphyrin; pack materials for food

(责任编辑:陈 娇)