Vol. 22 No. 1 Jan. 2003

文章编号:1009-038X(2003)01-0025-03

黑曲霉 VVTP84 生产果糖转移酶

郑氏金云1, 江波2, 王璋2

(1. 食品工业研究院,越南 河内; 2. 江南大学 食品学院,江苏 无锡 214036)

摘 要:从产果糖转移酶的 11 株菌株中筛选出一株黑曲霉 VVTP84 菌.该菌株在含蔗糖的培养基中 最佳摇瓶发酵时间为 30~h , pH 值为 7.0 ;当蔗糖质量浓度在 250~g/L 以内时 ,产酶与蔗糖质量浓度呈正相关 ; $M_gSO_4 \cdot 7H_2O$ 和 KH_2PO_4 的添加量分别以控制在 1.5~g/L 和 1.0~g/L 为宜.

关键词:果糖转移酶 黑曲霉 低聚果糖 发酵

中图分类号:TQ 929 文献标识码:A

Preparation of fructosyltransferase from Aspergillus niger VVTP84

Trinh Thi Kim Van¹, JIANG Bo², Wang Zhang²

(1. Food Industries Research Institute, Hanoi, Vietnam; 2. School of Food Science and Technology, Southern Yangtze University, Wuxi 214036, China)

Abstract: Aspergillus niger VVTP84 was selected from 11 strains for fructosyltransferase production. The (shaking flask) conditions of preparing fructosyltransferase were investigated. The results indicated that the optimum fermentation time and initial medium pH were 30 h and 7.0, respectively. It was also found that the enzyme activity was directly related to the sucrose concentration when it was below 250 g/L. And the maximum value of enzyme activity was obtained when the concentrations of $MgSO_4 \cdot 7H_2O$ and KH_2PO_4 were at 1 g/L and 1.5 g/L respectively.

Key words: fructosyltransferase; Aspergillus niger; fructooligosaccharide; fermentation

近年来,国内外出现了多种商品化的功能性低聚糖,如低聚木糖、大豆低聚糖、低聚异麦芽糖及低聚果糖等.由于低聚糖具有优越的生理化学活性,如促进肠胃功能,降低血脂、胆固醇、甘油三酯,防龋齿等,因而越来越受到人们的重视,其中低聚果糖深受消费者喜爱,而且它来源于蔗糖,不含杂质,风味良好[1].

商品化低聚果糖主要由蔗糖经果糖转移酶作用而获得 ,其分子式为 G—F— F_n , $n=1\sim3$ (G 为葡萄糖基 F 是果糖基 J^2 .

1950年果糖转移酶(fructosyltransferase)就已被发现^[3],但是直至80年代,这种酶才被科学家们注意并用于低聚果糖生产.产果糖转移酶的微生物有多种,如酵母(Yeast)米曲霉(Aspergillus oryzae)^{5]}、青霉属(Penicillium)^{6]}、黑曲霉(Aspergillus niger)^{7]}及屈芽短梗菌(Aureobasidium pullulans)^{8]}等.作者对来自越南且产果糖转移酶的11株菌株进行了筛选,获得一株产较高酶活的黑曲霉 VVTP84,并优化了该菌株发酵生产果糖转移酶的条件.

1 材料与方法

1.1 菌株

越南糖厂筛选的 5 株菌 ,越南河内食品工业研究院保留的 6 株菌 ,命名见表 1.

表 1 保藏菌株的产酶能力

Tab.1 Enzyme productive ability of stored strains

 菌株			 酶活力	
编号	(mg/mL)	U/mL	U/g	
VVTP82	38.2	3.09	80.9	
VVTP83	37.2	3.49	93.8	
VVTP84	40.7	7.52	184.7	
VVTP85	40.3	4.29	106.5	
VVTP86	38.5	3.97	103.1	
CL	41.6	3.57	85.8	
9-4	47.3	4.79	101.3	
77	42.1	3.80	90.3	
770	39.1	3.85	98.5	
3324	35.2	3.70	105.1	
K2	40.3	3.91	97.0	

1.2 试剂

所用的试剂均为色谱纯或化学纯.

1.3 设备

pHs-2 型酸度计:上海第三分析仪器厂生产; MA110 电子天平和 MP 2000-20 电子天平:上海天平仪器厂生产;高速均质仪 Ultra - Turrax T25: Jankle Kunkel Laboratories 生产;高效液相色谱系统(HPLC):Waters 209 系列,R401 示差折光检测仪,色谱柱为 E. Merck 公司生产的 Lichrosorb 3.9 mm×150 mm 氨基柱;HYG-II 型回转式恒温调速摇瓶柜:上海新星自动化控制设备成套厂生产.

1.4 实验方法

1.4.1 黑曲霉的培养

- 1)斜面培养基:土豆培养基.
- 2)基础发酵培养基组分(g/L):蔗糖 175,酵 母膏 5,蛋白胨 10,MgSO₄·7H₂O 1,KH₂PO₄ 1, pH 6.5.
- 3)培养方法:将种子从斜面管接到装有 30 mL 液体基础培养基的 250 mL 三角瓶中,于 200 r/min 30 ℃条件下振荡培养 36 h.
- 1.4.2 酶的提取 合并两瓶发酵培养液,用抽滤瓶过滤,经疗类据的柠檬酸-磷酸盐缓冲液多次洗涤

菌体 滤干后收集称重 ,即得湿菌体量 . 在上述湿菌体中加入 30~mL pH~5.0 的柠檬酸-磷酸盐缓冲液 ,于 2~400~r/min 均质 1~min ,重复一次 ,冰箱中贮存 3~h 后 ,抽滤并收集滤液 ,即得初酶液 ,放入冰箱中待用

- 1.4.3 酶活力测定 采用 $Hidak_a^{-4}$ 的方法并经适 当修改. 底物蔗糖质量浓度为 250 g/L 0.1 mol/L pH 5.0 的柠檬酸-磷酸盐缓冲液 5 mL , 酶液 0.25 mL ,夹套式酶反应器中于 50 ℃反应 1 h.酶活定义:每分钟生成 1 μ mol 蔗果三糖为一个酶活力单位.
- 1.4.4 糖组分的分析 利用高效液相色谱系列测定各糖组分的含量.测定的条件为进样质量浓度 5 g/L ,流动相为乙腈与水体积比为 75:25 ,体积流量 1 mL/min ,温度 25 °C ,进样量 10 μ L.样品处理是将糖液稀释至总固形物质量浓度为 5 g/L ,0.45 μ m 微孔滤膜过滤.

2 结果与讨论

2.1 产酶菌株的筛选

将初筛得到的 11 株菌进行复筛 ,测定发酵后的菌体量及果糖转移酶活力 结果见表 1. 从表 1 可以看出 ,11 株菌都有产果糖转移酶的能力 ,但产酶能力大小各异 .其中 VVTP84 不仅具有较高产酶能力且生长良好 ,因此选择 VVTP84 作为研究对象 .

2.2 发酵条件对果糖转移酶生产的影响

- 2.2.1 发酵时间的影响 测定不同发酵时间的酶活、湿菌体量以及发酵液的 pH 值 ,结果见图 1.30 h内酶活力和湿菌体量都随时间延长而提高 ,当从 30 h增加到 72 h 时 ,菌体量不断增加 ,但酶活力不断下降 .图 1 表明 ,发酵过程中发酵液 pH 有很大的变化 ,特别是在起始的 34 h 内 ,pH 随时间延长很快从 6.5 降到 2.6 ,然后保持在 pH 3 左右 ,直至结束 .由于果糖转移酶在 pH 3.5 以下时不稳定 ,该菌株在发酵后期产酸 ,影响产酶量 ,故发酵时间应该控制在 30 h 为宜 .
- 2.2.2 pH 值的影响 结果表明 发酵过程中菌株 产酸会使 pH 值降低 ,为了证实这一现象对产酶是 否有影响 ,作者采取了两种方法进行实验 :一是提高发酵液的起始 pH 值 ;二是在发酵过程中每隔 3 h 调整至起始 pH 6.5 ,结果见表 2 和图 2 .表 2 表明 ,起始 pH 值为 7.0 时 ,酶活最高 .图 2 表明 ,在前 30 h 进行 pH 值调整 ,对酶活力没有影响 ,后 30 h 酶活力可以保持在最高水平并略有升高 ,但提高量很低 ,也就是说 ,用调整发酵液 pH 值的方法来提高酶活没有意义 .

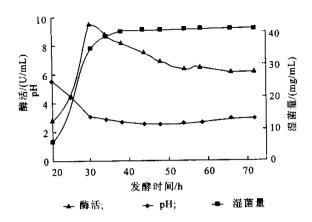


图 1 发酵时间对产酶的影响

Fig. 1 Effect of fermentation time on the enzyme production

表 2 起始 pH 值对产酶的影响

Tab.2 Effect of initial pH on the enzyme production

 起始 _p H 值	酶活力/(U/mL)	
5.5	7.6	
6.0	8.5	
6.5	9.5	
7.0	9.7	
7.5	7.8	

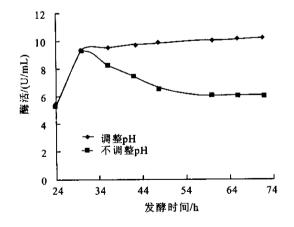


图 2 pH 值对产酶的影响

Fig. 2 Effect of pH on the enzyme production

2.2.3 蔗糖质量浓度的影响 测定了不同蔗糖质量浓度对发酵产酶活力和湿菌体量的影响 ,结果见图 3.蔗糖质量浓度提高 ,酶活力随之增加 ,但酶活力提高的幅度在蔗糖质量浓度高于 200 g/L 后趋缓.从经济角度考虑 ,蔗糖质量浓度以 170 ~ 200 g/L为宜._{万方数据}

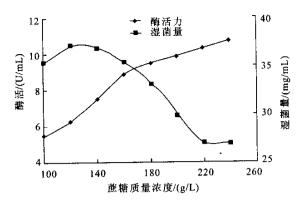


图 3 蔗糖质量浓度对产酶的影响

Fig. 3 Effect of sucrose concentration on the enzyme production

2.2.4 $M_gSO_4 \cdot 7H_2O$ 质量浓度的影响 在培养基中添加不同质量浓度的 $M_gSO_4 \cdot 7H_2O$ 进行实验 ,结果见图 4.可以看出 ,酶活力随 $M_gSO_4 \cdot 7H_2O$ 质量浓度的增加而升高 ,在 1.5 g/L 时酶活力达到最高 ,之后随 $M_gSO_4 \cdot 7H_2O$ 质量浓度的继续增加 酶活力下降.

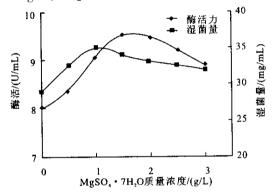


图 4 $MgSO_4 \cdot 7H_2O$ 质量浓度对产酶的影响

Fig. 4 Effect of MgSO $_4 \cdot 7H_2O$ concentration on the enzyme production

2.2.5 KH₂PO₄ 质量浓度的影响 不同质量浓度 的 KH₂PO₄ 对酶活的影响见图 5. 最佳的 KH₂PO₄ 添加质量浓度为 1 g/L. KH₂PO₄ 添加质量浓度高于或低于 1 g/L 时均不能得到更高酶活力.

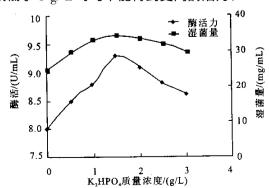


图 5 KH₂PO₄ 质量浓度对产酶的影响

Fig.5 Effect of KH_2PO_4 concentration on the enzyme production (下转第 $32 \, \overline{D}$)

- $3)0.008 \sim 0.012 \text{ mol/L}$ 柠檬酸三钠的加入, 能明显增强卡拉胶对牛奶酒的稳定作用。
- 4)加入质量分数 10%的蔗糖,并未对添加卡拉胶的牛奶酒稳定性起到改善作用,当 0.005 mol/L的柠檬酸三钠和质量分数 10%的蔗糖共存时,牛

奶酒的最终稳定性取决于蔗糖的作用。

5)牛奶酒在 40 $^{\circ}$ 贮藏过程中 $_{pH}$ 值基本不变 体系的粘度后期有下降趋势 ,色度(L 值)前期稍有增加后期趋于平稳.

参考文献:

- [1] Jean Grindrodm, Nickerson. Effect of various gums on skimmilk and purified milk proteins [J]. J. Dairy Science, 1967, 51(6): 834-841.
- [2] William B, Donnald M. Effect of alcohol content on emulsion stability of cream liqueurs J. Food Chemistry, 1985, 18:139 152.
- [3] Dickinson E, Sunit K. Stability of cream liqueurs containing low-molecular weight surfactants [J]. **Journal of Food Science**, 1989 54(1):77 81.
- [4]何静梅 ,麻建国 ,许时婴 ,等.脱脂奶粉勾兑牛奶酒工艺中 pH 值的影响[J].无锡轻工大学学报 ,2001 ,20(4) 377 379.
- [5]何静梅 麻建国 許时婴 筹.盐对勾兑牛奶酒体系稳定性的影响 []. 无锡轻工大学学报 2001 20(5)476 479.
- [6]盛益东,含酒精乳制品饮料稳定性的研究 D].无锡:无锡轻工大学 2000.
- [7] Dickinson E, Thrif TL, Wilson L. Thermal expansion and shear viscosity coefficients of water + ethanol + sucrose mixture J].

 J Chem Eng Date, 1980, 25:234 236.
- [8] Dickinson E, Golding M. Influence of alcohol on stability of oil-in-water emulsion containing sodium caseinate J. J. Colloid and Interface Science 1998, 197:133-141.

(责任编辑 朱 明)

(上接第27页)

3 结 论

- 1)对 11 株菌进行筛选得到了一株黑曲霉 VVTP84 具有较高产酶能力.
 - 2)以黑曲霉 VVTP84 为研究对象 优化该菌

株生产果糖转移酶的过程表明 ,发酵条件对产酶影响很大 ,最佳发酵条件 :发酵时间 30~h ,蔗糖质量浓度 200~g/L ,起始 $pH~7.0~,MgSO_4\cdot7H_2O$ 质量浓度 1.5~g/L ,KH $_2PO_4$ 质量浓度 1~g/L. 在此最佳条件下 酶活力达到每毫升发酵液 12~U.

参考文献:

- [1] Jong Wen Yun. Fructooligosaccharides-occurrence, preparation and application [J]. Enzyme Microb Technol, 1996, 19:108–117.
- [2] Hidaka H. Fructooligosaccharides a newly developed food material for heatl [J]. Kagaku to Seibutsy, 1983, 21:291-293.
- [3]江波.固定化黑曲霉生产低聚果糖的研究 D].无锡:无锡轻工业学院,1992.
- [4] Hidaka H, Hirayama M, Sumi N. A fructooligosaccharides-producing enzyme from Aspergillus niger ATCC 20611[J]. Agric Biol Chem, 1988, 52:1181-1187.
- [5] Pazur J H. Transfructosidation reactions of an enzyme of Aspergillus oryza [J]. Biol Chem, 1952, 199:217-225.
- [6] Hidaka H, Eida T, Saitoh Y. Industrial production of fructooligosaccharides and its application for human and animals J]. Nippon Nogeikagaku Kaishi, 1987, 61:915-923.
- [7] Hirayama M , Sumi N , Hidaka H. Purification and properties of a fructooligosaccharides-producing fructofuranosidase from Aspergillus niger ATCC2061[J]. Agric Biol Chem , 1989 53:667-673.
- [8] Hayashi S, Tubouchi M, Takasaki Y, et al. Long-term continuous reaction of immobilized-fructofuranosidase[J]. Biotechnol lett, 1994, 16:227 228.

(责任编辑:李春丽)