文章编号:1009-038X(2003)05-0025-05

气调包装条件下草莓、平菇呼吸特性变化规律

肖功年,张慜,汤坚

(江南大学 食品学院 江苏 无锡 214036)

摘 要:温度和包装内的气体组分是控制新鲜果蔬呼吸、延长超市新鲜果蔬货架期的有效手段.实验对草莓和平菇在 MAP 条件下呼吸特性的变化进行了研究,建立了以 q[CO₂] q[O₂] 温度(T) 和贮藏时间(t)的多元方程,并与其呼吸作用的酶的米氏模型进行了比较,结果显示三次项模型略优于米氏方程模型. 关键词:气调包装,呼吸;草莓;平菇;模型

中图分类号:S601

文献标识码:A

Respiration Characteristics Research of Strawberry(*Fragaria ananassa* Duch.) and Mushroom(*Pleurotus ostreatus*) under Modified Atmosphere Packaging

XIAO Gong-nian, ZHANG Min, TANG Jian

(School of Food Science and Technology , Southern Yangtze University , Wuxi 214036 , China)

Abstract : Respiration of fruits and vegetables was one of the most important factors effecting the storage time. The respiration changes of strawberry(*fragaria ananassa* duch.) and mushroom (*pleurotus ostreatus*) under modified atmosphere packaging were studied in this paper. In addition, a respiration model which correlated q[CO₂], q[O₂], temperature(*T*) and storage time(*t*) was built. The results showed the CO₂ evolution and O₂ consumption decreased with the extention of storage time. The model was also contrasted with Michell-Menten model.

Key words : respiration ; modified atmosphere ; strawberry ; mushroom ; model

果蔬采后,光合作用基本停止,呼吸作用成为 生命的主要特征,干物质不断消耗,所以,果蔬采收 后的贮藏应尽可能的降低其呼吸强度.果蔬采后虽 然总干物质不再增加,但仍有种种合成过程——主 要是新的酶促合成过程,这些过程只能利用体内原 有的物质通过分解和再组合实现.果蔬的呼吸失调 则发生生理障碍,不仅各种过程不能正常进行,还 出现病害症状——生理病害.

果蔬的呼吸作用是通过一系列由酶参与的生

化反应来实现的,它受到温度、底物浓度等因素的 影响.许多研究表明,降低氧气体积分数或升高二 氧化碳体积分数可以抑制果蔬的呼吸作用^{12]}.因 此果蔬的呼吸速率应该是氧气和二氧化碳体积分 数的函数,而不仅仅是氧气体积分数的函数.线性、 二次方和酶的米氏方程模型是用来描述氧气和二 氧化碳体积分数影响的3种方式.Hayakawa 等^{3]} 提出了一种简单的线性回归模型,并得到了广泛的 应用.然而,这类模型没有考虑氧气和二氧化碳之

收稿日期 2003-04-15; 修回日期 2003-06-03. 基金项目 江苏省农业攻关项目(BE20022320)资助课题. 作者简介方数据年(1976-)男,江西萍乡人,农产品加工与贮藏工程博士研究生. 间的潜在的交互作用,显然,这种交互作用也能影 响果蔬的呼吸特性。

Yang 和 Chinnarf⁴]提出把酶动力学原理应用 到呼吸速率方程中,属于二次方程式模型. R_{O_2} 或 $R_{CO_2} = \alpha_0 + \alpha_1 \varphi$ [O_2] + $\alpha_2 \varphi$ [CO_2] + $\alpha_3 T$ + $\alpha_4 \varphi$ [O_2] + $\alpha_5 \varphi$ [CO_2] + $\alpha_6 T^2 + \alpha_7 \varphi$ [O_2] CO₂] + $\alpha_8 \varphi$ [O_2] T + $\alpha_9 \varphi$ [CO_2] T (1)

Talasila⁵ 报道了草莓的呼吸速率方程不仅与 两种气体的体积分数相关,还与贮藏时间相关.其 他人则提出了一种更加符合逻辑的方法,即酶的米 氏方程模型,这种模型更加符合果蔬的呼吸特性. 有关资料表明^{6,71},果蔬采后采用 MAP 时,呼吸反 应动力学满足米氏方程,在没有 CO₂ 的情况下, MAP 中 O₂ 的消耗速率为

$$R_{\rm O_2} = \frac{V_{\rm m} \not q [O_2]}{K_{\rm m} + \not q [O_2]}$$
(2)

Lee^[7]提出把二氧化碳作为氧气的非竞争性抑 制建立了如下果蔬呼吸速率方程,并测定了青椒的 呼吸速率方程系数:

$$R = \frac{V_{\rm m} \varphi[O_2]}{K_{\rm m} + (1 + \frac{\varphi[O_2]}{K_i}) \cdot \varphi[O_2]}$$
(3)

式中: R 为呼吸速率, mL /(kg·h); K_m 为米氏常数, %(O₂ 体积分数); K_i 抑制常数, %(CO₂ 体积分数).

式 3)只有果蔬处于有氧呼吸条件下才能成 立.上述米氏方程描述同一体系中果蔬正常呼吸时 CO₂ 与 O₂ 体积分数的关系. 然而,一些研究者认为,酶的非竞争性抑制模型不能恰当地描述新鲜果蔬的氧气消耗速率,因为呼吸作用是由许多代谢反应步骤组成,各个反应的呼吸底物均不同^[8]. 呼吸速率不仅与 φ [CO₂], q[O₂], 方并,而且与温度(*T*)和贮藏时间(*t*)相关.因温度与贮藏时间是相互独立的影响因素,不存在相互关系.因此结合式(1)方

 $R = \alpha_0 + \alpha_1 \varphi \begin{bmatrix} O_2 \end{bmatrix} + \alpha_2 \varphi \begin{bmatrix} O_2 \end{bmatrix} + \alpha_3 T + \alpha_4 \varphi \begin{bmatrix} O_2 \end{bmatrix}^2$ $+ \alpha_5 \varphi \begin{bmatrix} O_2 \end{bmatrix}^2 + \alpha_6 T^2 + \alpha_7 \varphi \begin{bmatrix} O_2 \end{bmatrix} \begin{bmatrix} O_2 \end{bmatrix} \begin{bmatrix} O_2 \end{bmatrix} + \alpha_8 \varphi \begin{bmatrix} O_2 \end{bmatrix}$ $T + \alpha_9 \varphi \begin{bmatrix} O_2 \end{bmatrix} T + \alpha_{10} t + \alpha_{11} t^2 + \alpha_{12} t \varphi \begin{bmatrix} O_2 \end{bmatrix} + \alpha_{13} t$ $\varphi \begin{bmatrix} O_2 \end{bmatrix} + \alpha_{14} t \varphi \begin{bmatrix} O_2 \end{bmatrix} \begin{bmatrix} O_2 \end{bmatrix} + \alpha_{15} t \varphi \begin{bmatrix} O_2 \end{bmatrix} \begin{bmatrix} O_2 \end{bmatrix} (4)$

式(4)属于三次方模型(以下称"三次模型"). 在国内 对于 MAP 条件下果蔬的呼吸特性研究较 少本实验以草莓(Fragaria ananassa Duch.)和平 菇(Pleurotus ostreatus)为研究对象,以式(4)模型模 拟草莓和平菇在贮藏过程中呼吸特性的变化,并与 米氏模型进行比较,以期为气调包装设计提供应用 基础.

1 材料与方法

1.1 材料

草莓、平菇来源于苏州虎丘农贸市场,其中草 莓品种为丰香,7~8月成熟;平菇品种为夏丰962. 1.2 试验方法

1.2.1 气体配气方法 气体配比按图 1 流程进行. 采用 DQZ360 真空气调包装机(上海青葩食品包装 机械有限公司产品).

Fig. 1 Mixing system of modified atmosphere packaging

1.2.2 气调包装方法 3种原料经清洗后,草莓采用 LDPE 和 PVC 复合膜,包装内充入体积分数 2.5%O₂ 和 16% CO₂;平菇去蒂部,采用 LDPE 膜, 充入体积分数 7%O₂ 和 12% CO₂,分别贮藏于 2.6, 10 20 ℃条件下.

1.3 测试方法

气体成分采用改良式奥式气体分析仪测定.将 各条件下<u>各次测</u>得的 CO₂体积分数值换算成呼吸 万方数据 强度 mL/(kg·h)]:

$$R_{O_2} = \frac{\Delta y_{O_2} \times V}{100 \times m \times \Delta t}$$
(5)

$$R_{\rm CO_2} = \frac{\Delta y_{\rm CO_2} \times v}{100 \times m \times \Delta t} \tag{6}$$

式中 : Δy 为任意时刻在 Δt 内 , CO_2 增加的体积 , m³ ;V 为贮藏空间 , $V = V_{\&} - \frac{m}{\rho}$;m 为包装内果蔬 的质量 ,kg.

2 结果与分析

2.1 草莓 MAP 条件下呼吸变化规律

已有研究表明 在正常的植物生活温度范围内 (2~35℃)温度对呼吸的关系基本上符合一般化 学反应的温度系数,即 Q_{10} 为 2~4. 从图 2 可以看 出 草莓贮藏温度为 2 ℃ 时,氧气的消耗速率几乎 呈一直线;在3h时为10.74 mL/(kg·h),72h为 9.15 mL/(kg·h),二氧化碳的产生速率也类似;温 度为 20 ℃时 在 3~42 h 之间氧气、二氧化碳的消 耗速率几乎呈直线下降,其线性回归方程为v=-1.583 1x+41.674 相关系数为 0.897 9. 氧气的 消耗速率在 3 h 时为 42.78 mL/(kg·h),72 h 为 6.02 mL/(kg·h);二氧化碳的产生速率在 3 h 时为 43.05 mL/(kg·h),72 h为10.85 mL/(kg·h),此时 q[O₂]为0.5% φ[CO₂]为18.7%,说明此时还没 有进行无氧呼吸,随着贮藏期延长,氧气的消耗速 率曲线有不断向二氧化碳的产生速率曲线交叉趋 势,说明随贮藏时间的延长,氧气的消耗速率和二 氧化碳的产生速率两者相互影响,呼吸速率下降, 这说明呼吸作用得到了抑制。

- 图 2 草莓气调包装中 O₂ 消耗速率(R_{O2})和 CO₂ 的产 生速率(R_{CO2})
- Fig. 2 CO₂ evolution and O₂ consumption of strawberries under modified atmosphere packaging

2.2 平菇 MAP 条件下呼吸变化规律

平菇在体积分数 7% O_2 和 12% O_2 的条件下 呼吸特性变化见图 3. 从图中可以看出,平菇贮藏温 度为 2 ℃时,氧气的消耗速率呈下降趋势,但趋势 较平缓,在 3 h 时为 30.11 mL/(kg·h),72 h 时为 20.22 mL/(kg·h),二氧化碳的产生速率也类似,温 度为 20 ℃时 O_2 , O_2 的消耗速率在开始阶段快速 下降 3 h 研究物据.38 mL/(kg·h),51 h 后几乎下降 至 0,可能此时已经有无氧呼吸发生.相比较而言, 气调和温度对其呼吸特性影响显著,能降低平菇的 呼吸作用.

图 3 平菇气调包装中 O₂ 消耗速率(*R*_{O₂})和 CO₂ 的产 生速率(*R*_{CO₃})

Fig. 3 CO₂ evolution and O₂ consumption of mushrooms under modified atmosphere packaging

2.3 呼吸模型

2.3.1 三次项模型参数 利用测得的包装袋内 [CO₂ fm[O₂]的体积分数,由公式(6)(7)计算出 R_{O2}和 R_{CO2}值后,使用统计回归软件多重线性回归 得出呼吸方程的参数,结果见表1.因此,可得到回 归模型为

1)草莓

 $R_{O_2} = -13.2048 - 0.0204 \varphi [O_2] - 3.002 \varphi [CO_2] - -0.0594 T + 0.0594 \varphi [O_2]^2 + 0.5963 \varphi [CO_2]^2 + 7.029 \times 10^{-5} T^2 - 0.023 \varphi [O_2] I CO_2] + 0.0016 \varphi [O_2] T + 0.409 \varphi [CO_2] T + 1.6552 t - 0.0484 t^2 + 0.0201 t \varphi [O_2] + 0.0059 t \varphi [CO_2] + 0.0004 T \varphi [O_2]$

$$\begin{split} R_{\rm CO_2} &= -8.8594 - 0.0050\,\varphi [{\rm O_2}] - 3.3790\,\alpha_2\,\varphi \\ [{\rm CO_2}] - 0.1042\,\alpha_3\,T + 0.0437\,\varphi [{\rm O_2}] + 0.8697\,\varphi \\ [{\rm CO_2}] + 7.175 \times 10^{-5}\,T^2 - 0.0127\,\varphi [{\rm O_2}] \,{\rm I}\,{\rm CO_2}] + \\ 0.0030\,\varphi [{\rm O_2}] \,T + 0.3414\,\varphi [\,{\rm CO_2}] \,T + 1.4990\,t - \\ 0.0440\,t^2 - 0.0373\,t\varphi [\,{\rm O_2}] + 0.0087\,t\varphi [\,{\rm CO_2}] + \\ 0.0011\,T\varphi [\,{\rm O_2}] \,{\rm I}\,{\rm CO_2}] + 0.062\,t\varphi [\,{\rm O_2}] \,{\rm I}\,{\rm CO_2}] \end{split}$$

2)平菇

$$\begin{split} R_{\mathrm{O}_2} &= 1.\ 0866 - 0.\ 0004 \,\varphi [\ \mathrm{O}_2 \] - 1.\ 7366 \,\varphi [\ \mathrm{CO}_2 \] - \\ 0.\ 05051 \,T + 0.\ 0584 \,\varphi [\ \mathrm{O}_2 \]^2 + 0.\ 0853 \,\varphi [\ \mathrm{CO}_2 \]^2 + - \\ 0.\ 0002 \,T^2 + - 0.\ 0032 \,\varphi [\ \mathrm{O}_2 \] \,\mathrm{CO}_2 \] + 0.\ 0015 \,\varphi [\ \mathrm{O}_2 \] \\ T + 0.\ 0859 \,\varphi [\ \mathrm{CO}_2 \] T + 0.\ 5979 \,t + - 0.\ 0394 \,t^2 + \\ 0.\ 0558 \,t \varphi [\ \mathrm{O}_2 \] + - 0.\ 0203 \,t \varphi [\ \mathrm{CO}_2 \] + 0.\ 0014 \,T \varphi \\ [\ \mathrm{O}_2 \] \,\mathrm{CO}_2 \] + 0.\ 0278 \,t \varphi [\ \mathrm{O}_2 \] \end{split}$$

 $\begin{aligned} R_{\rm CO_2} &= 3.\ 1304 - 0.\ 0012 \, \varphi [\ {\rm O_2} \] - 2.\ 085 \, \varphi [\ {\rm CO_2} \] - \\ 0.\ 0050 \ T + 0.\ 0555 \, \varphi [\ {\rm O_2} \]^2 + 0.\ 1110 \, \varphi [\ {\rm CO_2} \]^2 - \\ 0.\ 0340 \ T^2 - 0.\ 002 \, \varphi [\ {\rm O_2} \] \ CO_2 \] + 0.\ 0019 \, \varphi [\ {\rm O_2} \] T + \end{aligned}$

0.0707 φ [CO₂]T + 0.3826t - 0.0340t² + 0.0677t φ [O₂]- 0.0220t φ [CO₂]+ 0.0015T φ [O₂] CO₂]+ 0.0262t φ [O₂] CO₂]

表1 草莓、平菇三次多项式呼吸模型参数

Tab.1 Tri-item model parameters of strawberries and mushrooms

		草	莓					平	菇			
	R_{O_2}			$R_{\rm CO_2}$			R_{O_2}			R_{CO_2}		
	参数值	标准差		参数值	标准差		参数值	标准差		参数值	标准差	
a_0	- 13.2048	2.2320	a_0	- 8.8594	2.2793	a_0	1.0866	4.570	a_0	3.1304	3.9426	
a_1	-0.0204	0.0031	a_1	-0.0050	0.0011	a_1	-0.0004	0.0022	a_1	-0.0012	0.0008	
a_2	-3.002	0.7726	a_2	- 3.3790	0.9050	a_2	-1.7366	0.7657	a_2	-2.085	0.8080	
a_3	-0.0594	0.0373	a_3	-0.1042	0.0418	<i>a</i> 3	-0.0051	0.0358	<i>a</i> ₃	-0.0050	0.03582	
a_4	0.0594	0.0037	a_4	0.0437	0.0020	a_4	0.0584	0.0030	a_4	0.0555	0.0015	
a_5	0.5963	0.2264	a_5	0.8697	0.2512	a_5	0.0853	0.0379	a_5	0.1110	0.0433	
a_6	7.029×10^{-5}	0.0001	a_6	7.175×10^{-5}	0.0002	a_6	-0.0002	0.0001	a_6	-0.0340	0.0083	
a_7	-0.0230	0.0037	a_7	-0.0127	0.0030	a7	-0.0032	0.0020	a_7	-0.0021	0.0012	
a_8	0.0016	0.0009	a_8	0.0030	0.0010	a_8	0.0015	0.0010	a_8	0.0019	0.0011	
a_9	0.4091	0.0330	a_9	0.3414	0.0339	<i>a</i> 9	0.0859	0.0166	<i>a</i> 9	0.0707	0.0093	
a_{10}	1.6552	0.1447	a_{10}	1.4990	0.1641	a_{10}	0.5979	0.4297	a_{10}	0.3826	0.3836	
a_{11}	-0.0484	0.0033	a_{11}	-0.0440	0.0037	a_{11}	-0.0394	0.0094	a_{11}	-0.0340	0.0083	
a_{12}	0.0201	0.0472	a_{12}	-0.0373	0.0524	<i>a</i> ₁₂	0.0558	0.0387	<i>a</i> ₁₂	0.0677	0.0392	
a_{13}	0.0059	0.0181	a_{13}	0.0087	0.0215	<i>a</i> ₁₃	-0.0203	0.0077	<i>a</i> ₁₃	-0.0220	0.0074	
a_{14}	0.0004	0.0006	a_{14}	0.0011	0.0006	a_{14}	0.0014	0.0004	a_{14}	0.0015	0.0004	
a ₁₅	0.1968	0.0333	a_{15}	0.062	0.0154	a ₁₅	0.0278	0.0260	a ₁₅	0.0295	0.0262	

2.3.2 米氏方程模型参数 将式(3)改写成

 $\frac{1}{R} = \frac{1}{V_{\rm m}} + \frac{K_{\rm m}}{V_{\rm m}} \frac{1}{q(O_2)} + \frac{1}{K_i \cdot V_{\rm m}} q(O_2) \quad (7)$ 通过测得包装袋内[CO₂]和[O₂]的体积分数,由公 式(5)(6)计算出 R_{O_2} 和 R_{CO_2} 值后,使用统计回归 软件按式(7)多重线性回归得出呼吸方程的参数, 结果见表 2 3.

表 2 草莓气调包装米氏方程模型参数

```
Tab.2 Michell-Menten model parameters of strawberries
```

温度	/ 1	$V_{\rm m}$ /		$K_{\rm m}$ /		D2				
°C	[mL/	[mL/(kg·h)]) ₂ ,%)	(((K ²				
R _{Q2} (氧气消耗率)模型中的参数值										
2	23.27	±1.56	0.25	±0.01	15.23	± 0.64	0.9984			
6	27.36	± 1.22	0.92	±0.031	22.11	± 0.57	0.9819			
10	55.47	± 2.31	1.48	±0.024	26.54	± 0.91	0.9979			
20	177.44	± 2.11	4.39	± 0.54	42.21	±1.03	0.9668			
R_{CO_2} (二氧化碳产生率)模型中的参数值										
2	21.91	±0.98	0.33	±0.008	14.98	± 0.58	0.9569			
6	28.63	± 2.25	0.99	±0.009	21.46	± 0.61	0.9962			
10	61.22	± 2.09	1.63	± 0.06	24.96	± 0.74	0.9941			
20	182.14	±1.87	4.56	±0.009	44.28	± 0.63	0.9814			
ノ」ノ」女乂JI白										

表 3 平菇气调包装米氏方程模型参数

Tab.3 Michell-Menten model parameters of mushrooms

温度	/ 1	//	-	$K_{\rm m}$ /		P^2				
°C	[mL/(kg·h)		(() ₂ ,%)	(((Λ				
R _Q (氧气消耗率)模型中的参数值										
2	63.27	±4.58	2.27	±0.01	15.23	± 0.64	0.9984			
6	77.36	± 1.22	3.92	± 0.031	25.18	± 0.57	0.9819			
10	89.47	± 1.38	4.48	± 0.024	36.54	± 0.91	0.9979			
20	157.48	± 2.11	4.31	± 0.54	52.27	±1.03	0.9668			
R _{CO2} (二氧化碳产生率)模型中的参数值										
2	61.38	±0.98	1.36	±0.008	15.32	± 0.58	0.9569			
6	78.69	± 2.25	1.99	±0.009	21.74	± 0.61	0.9962			
10	101.27	± 2.09	3.93	±0.06	34.67	± 0.74	0.9941			
20	172.66	± 1.87	5.55	± 0.009	34.20	± 0.63	0.9814			

从表 2 ,3 中可以看出 , $V_{\rm m}$ 随温度的升高而增 大. $V_{\rm m}$ 的物理意义代表的是最大呼吸速率 , $V_{\rm m}$ 与 温度的关系满足 Arrhenius 方程.

2.4 模型结果比较

因米氏方程模型未考虑到温度对呼吸速率的 影响,因此以6℃试验测定的值与6℃时的米氏方 程及三次项模型计算的值进行比较. 从图 4 中可以 看出,三次项模型的计算值和米氏模型的计算值与 测定值吻合 其中三次项模型的吻合度更高.

图 4 草莓、平菇呼吸速率三次项、米氏计算值与测定值的比较

Fig.4 Comparison of measured value with calculated values by Tri-item model and Michell-Menten model

3 结 论

 1)对不同温度条件下草莓和平菇的呼吸特性 进行了系统研究,结果表明温度和气调条件能有效 地抑制呼吸作用的进行.

2)在前人工作的基础上建立了三次项呼吸速 率模型:

草莓: $R_{O_2} = -13.2048 - 0.0204 \varphi$ [O₂] -3.002φ [CO₂] $-0.0594 T + 0.0594 \varphi$ [O₂] $+0.5963 \varphi$ [CO₂] $+7.029 \times 10^{-5} T^2 - 0.023 \varphi$ [O₂] CO₂] $+0.0016 \varphi$ [O₂] $T + 0.409 \varphi$ [CO₂] $T + 1.6552 t - 0.0484 t^2 + 0.0201 t \varphi$ [O₂] $+ 0.0059 t \varphi$ [CO₂] $+ 0.0004 T \varphi$ [O₂] CO₂] $+ 0.1968 t \varphi$ [O₂] CO₂]

 $R_{\rm CO_2} = -8.8594 - 0.0050 \varphi [O_2] - 3.3790 \alpha_2 \varphi$ [CO₂] - 0.1042 \alpha_3 T + 0.0437 \alpha [O_2] + 0.8697 \alpha [CO₂] + 7.175 \times 10^{-5} T^2 - 0.0127 \alpha [O_2] CO_2] + 0.0030 \alpha [O_2] T + 0.3414 \alpha [CO_2] T + 1.4990 t - $\begin{array}{l} 0.0440 t^{2} - 0.0373 t\varphi [\ \mathrm{O}_{2}\] + 0.0087 t\varphi [\ \mathrm{CO}_{2}\] + \\ 0.0011 T\varphi [\ \mathrm{O}_{2}\ \mathbf{I}\ \mathrm{CO}_{2}\] + 0.062 t\varphi [\ \mathrm{O}_{2}\ \mathbf{I}\ \mathrm{CO}_{2}\] \\ \hline \mathbf{\Psi}\vec{\mathbf{f}}\ : R_{\mathrm{O}_{2}} = 1.0866 - 0.0004 \varphi [\ \mathrm{O}_{2}\] - 1.7366 \varphi \\ [\ \mathrm{CO}_{2}\] - 0.0051 T + 0.0584 \varphi [\ \mathrm{O}_{2}\] + 0.0853 \varphi \\ [\ \mathrm{CO}_{2}\] + - 0.0002 T^{2} + - 0.0032 \varphi [\ \mathrm{O}_{2}\ \mathbf{I}\ \mathrm{CO}_{2}\] + \\ 0.0015 \varphi [\ \mathrm{O}_{2}\] T + 0.0859 \varphi [\ \mathrm{CO}_{2}\] T + 0.5979 t + \\ - 0.0394 t^{2} + 0.0558 t\varphi [\ \mathrm{O}_{2}\] + - 0.0203 t\varphi [\ \mathrm{CO}_{2}\] + \end{array}$

3)三次项模型和米氏方程模型与计算值均比 较吻合,但三次项模型略优于米氏方程模型。

参考文献:

- [1] Kader A, Zagory D, Kerbel EL. Modified atmosphere package of fruits and vegetables J. CRC-Critical Reviews in Food Science and Nutrition, 1989, 28:1–30.
- [2] Ben-Yehoshua S, Shapiro B, Evenchen Z, et al. Mode of action of plastic film extending life of lemon and bell pepper fruit by alleviation of water stress J]. Plant Physiol, 1983, 73 87-93.
- [3] Hayakawa K Hening Y S, Gilbert S G. Formlae for predicting gas exchange of fresh produce in polymeric film package J]. J Food Sci , 1975 40 :186 – 191.
- [4] Yang C C, Chinnan M S. Modeling the effect of O₂ and CO₂ on respiration and quality of stored tomatoes J]. Trans ASAE, 1988 31(3) 920 – 925.
- [5] Talasila P C , Chau K V , Brecht J K. Effects of gas concentrations and temperature on O₂ consumption of strawberries[J]. Transactions of the American Society of Agricultural Engineers , 1992 35 221 – 224. (下转第 33 页)

图 8 WGPP2(后)紫外吸收光谱图 Fig.8 UV spectra of WGPP2(with NaOH) 单糖与蛋白质中某一肽段的连接是糖蛋白的 重要结构特征.目前发现的多种连接方式中,主要 有两类:一类是糖链与天冬酰胺连接,称为 N-连接

参考文献:

- [1] Amado R, Arigoni E. Nutritive and functional properties of wheat gern[J]. International Food Ingredients, 1992, 4:30-34.
- [2] Ge Y, Sun A, Ni Y, *et al*. Some Nutritional and functional properties of defatted wheat germ proteir[J]. Journal of Agricultural and Food Chemistry, 2000, 48(12):6215-6218.
- [3] Krings U, El Saharty Y S, Berger R G. Antioxidant activity of extracts from roasted wheat germ[J]. Food Chemistry, 2000, 71(1):91.
- [4]李建武 袁明秀.生物化学实验原理和方法 M].北京 北京大学出版社 ,1994.216.
- [5] Lowry O H, Rosebrough N J, Farr A L, et al. Protein measurement with the folin phenol reagent J]. J Biol Chem, 1951, 193:265-275.
- [6]张惟杰.复合多糖生化研究技术[M]. 杭州:浙江大学出版社, 1999.37-38.
- [7] Plarter J J, Carlson C M. Studies of mucin-tyoe glycoproteir[J]. Anal Biochem, 1975, 65:153-163.

(责任编辑 :杨 萌)

(上接第29页)

- [6] Lee D S, Haggar P E, Lee J. et al. Model for fresh produce respiration in modified atmosphere based on principles of enzyme kinetics J. J Food Sci , 1991, 56:1580 – 1585.
- [7] Weichmann J. The effect of controlled atmosphere storage on the sensory and nutritional quality of fruits and vegetables J]. Hort Rev, 1986, 8:101.
- [8] Makino Y, Iwasaki K, Hirata T. A theoretical model for oxygen consuption in fresh produce under atmosphere with carbon dioxide J]. J Agri Eng, 1996a, 65:193-203.

糖蛋白;另一类与丝氨酸或苏氨酸连接,称为 O-连接.在稀碱溶液的作用下,O-型糖肽键能发生 β -消去反应,与糖链连接的丝氨酸转化成 α -氨基丙 烯酸,苏氨酸转化为 α -氨基丁烯酸,形成的不饱和 氨基酸在 240 nm 处有明显的紫外吸收.

WGPP1 经碱处理后的紫外吸收光谱图上,240 nm 处的吸收明显增加,发生了 β-消去反应,说明其 糖肽键为 O-型糖肽键;而 WGPP2 经碱处理后的紫 外吸收光谱图上,240 nm 处的吸收没有明显增加, 没有发生 β-消去反应,说明其糖肽键不属于 O-型糖 肽键.

3 结 论

小麦 胚 水 溶 性 提 取 物 中 含 有 WGPP1 和 WGPP2 2 种糖蛋白;化学组成分析表明,WGPP1、 WGPP2 中都含有糖成分,并且糖所占的质量分数 比较高,分别达到了 47.24%和 46.97%;气相色谱 分析显示,WGPP1 的单糖组成主要为鼠李糖和葡 萄糖,这 2 种糖的摩尔比约为 2:1;WGPP2 的单糖 组成主要为鼠李糖、甘露糖和葡萄糖,这 3 种糖的 摩尔比为 3:1:2;紫外吸收光谱比较,可以看出 WGPP1 在碱的作用下发生 β-消去反应,表明在 WGPP1 分子结构中存在 Ο-型糖肽键.

万方数据