Vol. 25 No. 4 Jul. 2006

文章编号:1673-1689(2006)04-0081-04

乌饭树树叶中黄酮类色素的抗氧化活性

王立1, 姚惠源1, 陶冠军2, 秦昉2

(1. 江南大学 食品学院,江苏 无锡 214036;2. 江南大学 分析测试中心,江苏 无锡 214036)

摘 要: 对乌饭树树叶中提取出的色素进行了分离纯化,分离出了 4 种黄酮类物质。并且对这 4 种物质清除活性氧自由基的能力进行了研究,发现乌饭树提取物都具有很强的清除自由基能力,清除能力最强的槲皮素和 6 \sharp 提取物的 IC_5 达到了 5.9 $\mu g/mL$ 左右。

关键词: 乌饭树;黄酮;分离;纯化;自由基;清除

中图分类号:TS 207

文献标识码:A

Scavenging $[O_2^- \cdot]$ and $[\cdot OH]$ of extracts from the Leaves of *Vaccinium bracteatum* Thunb

WANG Li¹, YAO Hui-yuan¹, TAO Guan-jun², QIN Fang²

(1. School of Food Science and Engineering, Southern Yangtze University, Wuxi 214036, China; 2. Testing and Analysis Center, Southern Yangtze University, Wuxi 214036, China)

Abstract: In this article, four flavones from the leaves of Vaccinium Bracteatum Thunb were identified and purified. Their functions of scavenging $[O_{2-}]$ and [OH] were also deiscussed. It was found that all the extracts have low IC_{50} . Quercetin and the 6th extract have the lowest IC_{50} of about 5.9 μ g/mL.

Key words: Vaccinium bracteatum Thunb; flavone; identification; purification; freeradicle; scavenge

乌饭树属(又称为越桔属)植物属于杜鹃花科。该属全世界有约 450 种,我国约有 91 种。我国民间有采食乌饭浆果的习惯,有些地方有制造果酱和酿酒,但是没有形成规模。国外对于乌饭树树果的研究报道也有,但不是很多,主要研究是关于乌饭树树果的生理功能,如抗衰老、抗氧化、抗癌防癌、抗菌等等[1-8]。

从乌饭树树叶中分离出很多种化学成分,包括 黄酮类物质、维生素、糖、果胶、有机酸、环烯醚萜类 和萜类化合物。紫黑浆果中含多种多酚化合物,如 花色素苷和一些甙元、桂皮酸、苯甲酸衍生物、黄烷- 3-醇、黄酮醇糖甙等[^{9]}。并且有报道已经从中分离出了一种黄酮类物质——槲皮素^[10]。

黄酮类化合物一直是人们所关注的抗氧化剂和自由基清除剂,众多的研究表明,黄酮类化合物具有广泛的生物活性,如抗氧化、抗突变、抗衰老、抗肿瘤、抗菌等等[12-15]。其中最主要的是黄酮的抗氧化活性,主要表现在减少自由基的产生和清除自由基两个方面。

作者对乌饭树树叶中提取出的黄酮类色素进行了分离纯化,首次从中分离出了4种黄酮类物质,并且对这些物质清除活性氧自由基的能力进行

了研究。

1 材料与方法

1.1 实验材料、试剂与设备

乌饭树树叶黄酮单体:实验室自制;鲁米诺: FLUKA公司产品;0.05 mol/L pH 7.8 磷酸盐缓冲液(PB),1 mmol/L 鲁米诺(L),0.1 mmol/L 维生素 C 溶液,33.3 mmol/L 过氧化氢溶液(H₂O₂),1 mmol/L 邻菲罗啉,1 mmol/L 硫酸铜缓冲液,0.05 mol/L pH 9.0 的硼酸-硼砂盐缓冲液(BB),0.05 mol/L pH 10.2 碳酸-盐缓冲液(CB-L),1 mmol/L 邻苯三酚水溶液(P),均为分析纯;槲皮素:贵州大学生化中试基地提供;芦丁:上海生化试剂一厂产品。Waters 2690 型高效液相色谱仪,LichrospherC-18 色谱柱:美国 Waters 公司产品;生物化学发光测定仪:上海上立检测仪器厂产品;微型混合器:上海彭氏实业有限公司产品;微量移液器:上海求精生化试剂仪器有限公司。

1.2 实验方法

1.2.1 分离纯化 乌饭树树叶 体积分数 95% 乙醇提取液 \rightarrow 石油醚萃取脱脂 \rightarrow 水相用氯仿、正丁醇萃取 \rightarrow 正丁醇萃取部分浓缩至无醇味 \rightarrow 上 AB-8 大孔吸附树脂柱初步纯化 \rightarrow 水洗除杂质 \rightarrow 体积分数 95% 乙醇洗脱 \rightarrow 上聚酰胺柱粗分 \rightarrow 不同体积分数的 乙醇 梯度洗脱 \rightarrow 各组分聚酰胺柱细分 \rightarrow HW40 柱乙醇梯度洗脱 \rightarrow 得到纯物质 $3\# \sim 6\#$ 。

1.2.2 鉴定 盐酸一锌粉试验:取试液 1 mL,加入少量锌粉,摇晃,滴加少量浓盐酸,加热 $3 \sim 5$ min;铅盐沉淀试验:取试液 2 mL,滴加少量乙酸铅试剂;三氯化铝试验:取少量试液滴于滤纸上,喷质量分数 1%三氯化铝溶液,然后于紫外灯下观察;氨熏试验:取少许样品滴于滤纸上,氨气熏,在可见光和紫外灯下观察;HPLC 图谱鉴定:观察样品的HPLC 图谱[16-19]。

1. 2. 3 超氧阴离子自由基 $[{\rm O_2}^- \cdot]$ 的清除实验配制一定浓度的乌饭树树叶黄酮单体甲醇溶液,并用 0. 05 mol/L pH 7. 8 并含有 0. 1 mmol/L 的 EDTA 磷酸盐缓冲液稀释成不同的浓度,发光系统采用邻苯三酚一鲁米诺体系。配比如下:空白试剂 10 μ L; 样品 10 μ L; 邻苯三酚 20 μ L; 0. 05 mmol/L CB-L: 970 μ L。

精确移取样品和邻苯三酚加入无色透明的硬质玻璃管中,置于发光测定仪中并使之进入测定位置,准确加入 CB-L,启动发光装置,立即使用 R 程序测量 $1\overline{A}$ \overline{A} \overline{A}

测定甲醇及各种不同稀释浓度的甲醇溶液作为空白的发光值,用下式计算测试样品的抑制率:

抑制率(%)= $(A_0 - A_s)/A_0 \times 100\%$ (1) A_0 为空白发光值, A_s 为测试样品发光值[$^{20-22}$]。

以样品浓度与抑制率作图,根据拟合方程求出抑制率为 50% 时所需样品的浓度,即半抑制浓度 IC_{50} 。

1.2.4 羟基自由基[•OH]的清除实验 测定体系采用邻菲罗啉发光体系。测定操作配比如下:样品液 $V~\mu L$; 0.1 mmol/L VC 20 μL ; 1 mmol/L Cu-SO₄ 50 μL ; 1 mmol/L 邻菲罗啉 50 μL ; 缓冲液 BB 830 μL ; 33.3 mmol/L H_2O_2 50 μL 。V 为按照需要加入样品液体积。

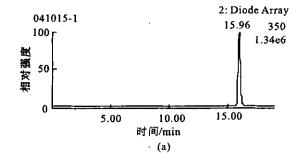
依次将样品和各种试剂加入到试管中,最后加入 H_2O_2 ,启动发光反应,放入发光测定仪中并使之进入测定位置,立即使用 R 程序测量 1 min 内每 6 s 的发光积分强度 CP_{6s} ,以第六个 6 s 的发光强度 CP_{6s} 为标准进行计算,同时以不同体积的甲醇替代样品作为空白对照,计算抑制率(计算公式同式 (1)) [23-25]。

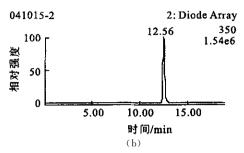
以样品浓度与抑制率作图,根据拟合方程求出抑制率为 50%时所需样品的浓度,即半抑制浓度 IC_{50} 。

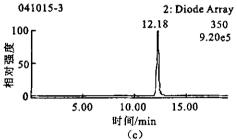
2 结果与讨论

2.1 纯化鉴定

纯化鉴定见表1和图1。


表 1 黄酮类化合物定性分析结果


Tab. 1 Qualitative analysis of the extracts


反应类型	现象	结果	
————————————————————————————————————	4 种物质都变成红色 并且静置后有红色沉 淀	为黄酮、二氢黄酮或二 氢黄酮醇类化合物	
铅盐沉淀 试验	4 种物质都有明显的 红色沉淀	为黄酮类化合物,有邻 二酚羟基或兼有 3- OH、4-酮基或 5-OH、 4-酮基黄酮	
三氯化铝 试验	4 种物质都生成黄色	为查耳酮、黄酮醇或黄酮类化合物	
氨熏试验	4 种物质都生成黄色	为黄酮类化合物	

由表 1 可见,4 种物质均为黄酮类化合物。

HPLC 分析条件:检测器:WATERS 996;分析柱:Lichrospher C-18 2.1X250 mm;流动相:甲醇水-体积分数 1% 乙酸梯度洗脱;柱温:30 \mathbb{C} ;流速: 0.3 mL/min;进样量: $10~\mu$ L。(以时间/min 和相对强度/%作图)

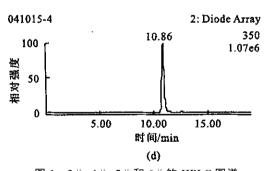


图 1 3 # 、4 # 、5 # 和 6 # 的 HPLC 图谱

Fig. 1 The HPLC spectra of extracts (Coded $3\,\sharp$, $4\,\sharp$, $5\,\sharp$ and $6\,\sharp$)

从图 1 中的 4 张液相图谱可以初步看出,这 4 种物质均为纯物质。

2.2 乌饭树树叶提取物对超氧阴离子自由基[O₂ •]清除的影响

超氧阴离子自由基是基态氧接受一个电子产生的第一个氧自由基,是其它氧自由基的前身,最主要的是可以经过一系列的反应生成其它的氧自由基,因此对于超氧阴离子自由基的清除具有特别重要的意义[11]。

邻苯三酚-鲁米诺发光体系常用于超氧阴离子自由基清除的研究,它具有专一性强、灵敏度高的优点。在碱性条件下,邻苯三酚自氧化产生超氧阴离子自由基形数据•],[O₂-•]激发鲁米诺使之处

于激发态,当鲁米诺分子退激时,发出化学冷光,在一定的浓度范围内,发光强度与 $[O_2^- \bullet]$ 的数量呈一定的比例关系,可以采用生物化学发光仪检测发光强度,进而考察样品对 $[O_2^- \bullet]$ 的清除能力。

从图 2 可以看出从乌饭树树叶中提取出的物质对超氧阴离子 $[O_2^- \cdot]$ 都具有一定的清除能力,但是清除能力具有差异,同时也可以看出,乌饭树树叶粗提物也具有相当强的清除能力。提取物中最强的是槲皮素和 6 # 物质,计算其 IC_{50} 发现达到 5. 48 μ g/mL 和 5. 91 μ g/mL,最差的是 3 # ,其 IC_{50} 为 17. 44 μ g/mL。具体的强弱顺序为:槲皮素 \approx 6 # 测试样品 > 4 # 测试样品 > 5 # 测试样品 > 3 # 测试样品 > 5 #

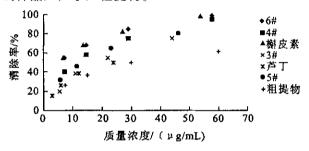


图 2 不同测试样品对超氧阴离子 $[O_2^{-} \cdot]$ 的清除效果

Fig. 2 The superoxide anion scavenging capacity of the extracts

2.3 乌饭树树叶提取物对羟基自由基[•OH]清除的影响

羟基自由基[•OH]是最活泼的自由基,也是已知自由基中氧化能力最强的自由基,反应能力极强,对生物机体的危害极大,几乎可以与任何大分子物质(如蛋白质、核酸、脂质)等发生作用,导致机体受损和基因突变,引起机体衰老和癌变[26-27]。

邻菲罗啉- $CuSO_4$ -VC- H_2O_2 发光体系常用于羟基自由基[•OH]的清除研究,羟基自由基[•OH] 攻击发光剂邻菲罗啉,使之发光,其发光强度在一定的时间范围内与[•OH]的量呈一定的比例关系。

从图 3 可以看出从乌饭树树叶中提取出的物质对羟基自由基[•OH]都具有一定的清除能力,但是各个提取成分之间清除能力具有一定的差异,同时也可以看出,乌饭树树叶粗提物也具有一定的清除能力。提取物中最强的是槲皮素和 $6 \sharp$ 物质,计算得到其 IC_{50} 达到 $5.63~\mu g/mL$ 和 $5.99~\mu g/mL$,最差的是 $3 \sharp$,其 IC_{50} 为 $22.45~\mu g/mL$ 具体的强弱顺序为:槲皮素 $\approx 6 \sharp$ 测试样品 $>4 \sharp$ 测试样品 $>5 \sharp$ 测试样品 $>3 \sharp$ 测试样品 $>5 \sharp$ 测试样品

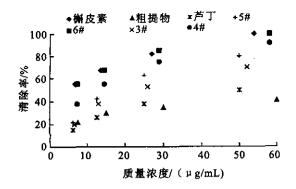


图 3 不同测试样品对羟基自由基[•OH]的清除效果

Fig. 3 The hydroxyl radical-scavenging capacity of the extracts

3 结 语

乌饭树树叶具有一定的生理功能,但是目前利用不是很多,主要原因是其中的成分不够明确。作者从乌饭树树叶分离出了4种黄酮类物质,并且发现这些物质具有很强的清除自由基的能力,相信这将有助于乌饭树的进一步开发利用。

参考文献:

- [1] James A. Joseph, Reversals of age-related declines in euronal signal transduction, cognitive and motor behavioral deficits with blueberry, spinach or strawberry dietary supplementation[J]. **The Journal of Neuroscience**, 1999, 19 (18): 8114 8121.
- [2] Connor A M. Variability in antioxidant activity in blueberry and correlations among different antioxidant activity assays [J]. Journal of the American Society for Horticultural Science, 2002,127 (2);238-244.
- [3] Connor A M. Changes in fruit antioxidant activity among blueberry cultivars during cold—temperature storage[J]. **Journal** of Agricultural and Food Chemistry, 2002, 50(4):893—898.
- [4] Pinhero R, Paliyath G. Antioxidant and calmodulin-inhibitory activities of phenolic components in fruit wines and its biotechnological implications[J]. Food Biotechnology, 2001,15(3):179-192.
- [5] Anon. The benefits of blueberries [J]. Food Engineering International, 1998, 23 (2):17.
- [6] Howell A B. Cranberry juice and adhesion of antibiotic-resistant uropathogens[J]. **Journal of the American Medical Association**, 2002, 287(23): 3082-3083.
- [7] Moon J W. Genotypic difference in the effect of temperature on CO₂ assimilation and water use efficiency in blueberry[J]. **Journal of the American Society for Horticulture Science**, 1987,112(1):170-173.
- [8] Weiss E I. Inhibitory effect of a high-molecular-weight constituent of cranberry on adhesion of oral bacteria[J]. Critical Reviews in Food Science and Nutrition, 2002, 42(3): 285-292.
- [9] 柳云溪. 黑果越桔的研究进展[J]. 国外医药·植物药分册,1998,13(1):13-17.
- 「10] 王立,姚惠源. 乌饭树树叶中黄酮类色素提取及分离纯化[J]. 食品与发酵工业,2004,10:120-125.
- [11] 赵保路. 氧自由基和天然抗氧化剂[M]. 北京:科学出版社,2002.
- [12] 刘莉华,宛晓春,李大祥.黄酮类化合物抗氧化活性构效关系的进展[J].安徽农业大学学报,2002,29(3):265-270.
- [13]裴凌鹏,惠伯棣,金宗濂,等. 黄酮类化合物的生理活性及其制备技术研究进展[J]. 食品科学,2004,(2);203-207.
- 「14] 覃仁辉,张梦军,吴世容,等. 银杏叶中黄酮类化合物的提取及其医药学应用[J]. 长沙大学学报,2004,18(2):37-42.
- [15] 刘凤云,沙棘总黄酮的药理研究概况[J]. 中药材,2004,27(2):145-147.
- [16] 林启寿. 中草药成分化学[M]. 北京:科学出版社,1977.
- [17]肖崇厚. 中药化学[M]. 上海:科学技术出版社,1997.
- [18] K. R. 马卡姆. 黄酮类化合物结构鉴定技术[M]. 张宝琛,唐崇实译. 北京:科学出版社,1990.
- [19] 高锦明. 植物化学[M]. 北京:科学出版社,2003.
- [20] Wang Hong, Gao Guo-hua. Oxygen radical absorbing capacity of anthocyanins[J]. J Agric Food Chem, 1997, 45:304—309.
- [21] Frankel E N, Bosanek C A. Commercial grape juices inhibit in the vitro oxidation of human low-density lipoproteins[J]. J Agric Food Chem, 1998,46(3):834-838.
- [22] 许申鸿,杭湖. 邻苯三酚-碳酸盐缓冲液化学发光体系的研究[J].生物化学与生物物理进展,1999,26(5),488-491.

蛋白质肽,并进行活性探讨,充分利用软骨多糖和 蛋白质资源。

表 2 硫酸软骨素粗品和纯品的氨基酸分析

Tab. 2 Individial AA contents of crude and purified ChS

非必需氨基酸名称	质量分数/(g/Kg)		必需氨基酸名称	质量分数/(g/Kg)	
	粗品	纯品	少而安全的口仰	粗品	纯品
天冬氨酸(Asp)	11.89	1.68	缬氨酸(Val)	2.63	0.68
谷氨酸(Glu)	20.66	2.94	蛋氨酸(Met)	0.42	0.22
丝氨酸(Ser)	6.61	3.64	苯丙氨酸(Phe)	1.92	1.90
组氨酸(His)	2.80	0.66	亮氨酸(Leu)	3.57	1.50
甘氨酸(Gly)	34.14	2. 16	异亮氨酸(Ile)	1.68	1.02
精氨酸(Arg)	20.02	0.50	赖氨酸(Lys)	8.19	0.17
胱氨酸(Cys-Cys)	0.99	0.13	苏氨酸(Thr)	2.60	1.11
酪氨酸(Tyr)	0.86	0.10	丙氨酸(Ala)	9.90	1.28
脯氨酸(Pro)	9.39	3.00	羟脯氨酸 9.98	_	_
总非必需氨基酸量	127. 24	16.09	总必需氨基酸量	21.01	6.60
氨基酸总量	148. 25	22.69			

参考文献:

- [1]李鑫,姚开,贾冬英,等. 硫酸软骨素的提取和纯化分离技术[J]. 天然产物研究与开发,2004,116(16);597-600.
- [2] 李南. 硫酸软骨素的开发及生产工艺控制[J]. 上海水产大学学报,1998,7(1):38-43.
- [3]姜艳,林海,左永生. 混凝法在硫酸软骨素废水后处理中的应用[J]. 工业安全与环保,2003,19(11):11-12.
- [4] Volpi N, Tarugi P. Influence of chondroitin sulfate charge density, sulfate group position, and molecular mass on Cu²⁺-mediated oxidation of human low-density lipoproteins: effect of normal human plasma-derived chondroitin sulfate[J].

 Journal of Biochemistry, 125,(2): 297-304.
- [5] 张惟杰. 糖复合生化技术(第2版)[M]. 浙江:浙江大学出版社,1999:21.
- 「6] 范小兵,李慈娟,沙大年,等. 邻菲罗啉化学发光体系测定羟自由基的建立[J]. 基础医学与临床,1998,18(6):68-71.
- [7]徐靖,杨秀岑.邻苯三酚—鲁米诺发光体系测定 SOD 活性[J]. 郧阳医学院学报, 1999, 18(2): 68-70.
- [8] 奚俊,张有森. 对硫酸软骨素传统提取方法的改进[J]. 生物学杂志,2000,17(6):33-34.
- [9]华子义. 硫酸软骨素生产新工艺[J]. 上海大学学报(自然科学版),2001,7(4):334-336.
- [10] 马淑涛,张天民,李南,等. 不同工艺硫酸软骨素的理化性质和生物活性[J]. 中国医药工业杂志,1993,8:348-352.
- [11] Takuo Nakano, Kayo Nakano. Extraction of glycosaminoglycan peptide from bovine nasal cartilage with 0. 1M sodium acetate [J]. J Agric Food Chem, 1998, (46): 772-778.

(责任编辑:杨 萌)

(上接第84页)

- [23] 范小兵,李慈娟,沙大年,等. 邻菲罗啉化学发光体系测定羟基自由基的建立[J]. 基础医学与临床,1998,18(6):68-71.
- [24] 陈季武,胡天喜. 测定・OH 产生与清除的化学发光体系[J]. 生物化学与生物物理进展,1992,19(2):136—140.
- [25] Heinonen I M, Meyer A S. Antioxidant activity of berry phenolics on human low-density lipoprotein and liposome oxidation[J]. J Agric Food Chem, 1998,46(10):4107-4112.
- [26] 赵保路. 氧自由基和天然抗氧化剂[M]. 北京:科学出版社,2002.
- [27] 周坤福. 分子生物学与中药开发[M]. 北京:人民卫生出版社,2000.

(责任编辑:朱明)