文章编号:1673-1689(2007)01-0033-04

葡萄糖基(α-1→6)β-环糊精的波谱学 数据与结构确证

崔 波¹², 金征宇¹, 周万里³, 毕春元³

(1. 江南大学 食品科学与安全教育部重点实验室,江苏无锡 214036;2. 山东轻工业学院 食品与 生物工程学院,山东济南 250010;3. 山东科学院山东省生物传感器重点实验室,山东济南 250014)

摘 要:对酶法合成的葡萄糖基(α -1→6)β - 环糊精的红外(IR)光谱、质谱(MS)、氢谱(¹H-NMR)、碳谱(¹³C-NMR)、氢氢相关谱(¹H-¹H COSY)、氢氢完全相关谱(¹H-¹H TCOSY)、异核单量 子相干相关谱(HSQC)和异核多键相关谱(HMBC)进行了解析报道,对所有的¹H-NMR和¹³C-NMR 谱进行了归属,讨论了红外特征吸收峰所对应的官能团的振动形式。 关键词:葡萄糖基(α -1→6)β - 环糊精;红外光谱;质谱,核磁共振谱 中图分类号:0.657.63 文献标识码:A

Spectral Data Analysis and Identification of Glucosyl(α -1 \rightarrow 6) β -cyclodextrin

CUI Bo¹², JIN Zheng-Yu¹, ZHOU Wan-li³, BI Chun-yuan³

(1. Key Laboratory of Food Science and Safety, Ministry of Education, Southern Youngtze University, Wuxi 214036, China; 2. College of Food and Biologic Engineering, Shandong Institute of Light Industry, Jinan 250100, China; 3. Key Laboratory for Biosensors of Shandong Province, Jinan 250014, China)

Abstract 'Glucosyl(α -1 \rightarrow 6) β -cyclodextrin was synthesized by enzymatic method. The infrared spectrum (IR), mass spectrometetry(MS), ¹H nuclear magnetic resonance(¹H-NMR), ¹³C nuclear magnetic resonance(¹³C-NMR), ¹H-¹H correlated spectroscopy(¹H-¹H COSY), ¹H-¹H total correlated spectroscopy(¹H-¹H TCOSY), (¹H detected) heteronuclear single quantum coherence(HSQC) and (¹H detected) heteronuclear multiple bond coherence(HMBC) of Glucosyl(α -1 \rightarrow 6) β -cyclodextrin were investigated and interpreted. All the ¹H-NMR and ¹³C-NMR chemical shifts were assigned by means of ¹H-¹H COSY , ¹H-¹H TCOSY , HSQC and HMBC. The vibrations of functional groups of this compound were also discussed.

Key words : glucosyl(α -1 \rightarrow 6) β -cyclodextrin ; infrared spectrum ; mass spectrometetry ; nuclear magnetic resonance

收稿日期 2006-04-25.

基金项目 :江苏省自然科学基金(BK2004018)和山东省自然科学基金项目(Y2005B11).

作者简介:崔波(1971-),男,山东诸城人,副教授,食品科学与工程博士研究生.Email cuiborr@ hotmail.com

通讯作者 :金征宇(1960-) ,男,江苏扬州人,工学博士,教授,博导.主要从事碳水化合物的研究. Email zijin@ sytu.

环状糊精是由淀粉通过葡萄糖基转移酶合成 的 α – 1 A 糖苷键连接的环状麦芽低聚糖。根据葡 萄糖残基的个数 ,分别称为 α -CD、 β -CD、 γ -CD。环 糊精的空间结构呈中空的锥形圆筒状 ,具有疏水 性 ,可以与化合物形成包合物 ,空腔外由于羟基存 在而使整个环糊精分子具有亲水性。由于这种特 殊结构 ,使环糊精在手性分离、分子识别、模拟酶、 新材料和超分子化学等领域有很高的研究应用价 值 ,在食品、医药、分析检测、农药和精细化工等行 业的应用前景更是诱人。环状糊精最常用的是 β -CD ,但由于溶解度低 ,使其应用受到限制。通过环 糊精分子中的羟基反应能制备多种衍生物 ,从而扩 大分子的亲水区 ,可以改善环糊精的溶解性。开发 高水溶性的环糊精产品成为近年来国内外研究的 一大热点。

葡萄糖基(α-1→6)β - 环糊精就是β - 环糊 精在其某个葡萄糖残基的第6位碳原子的羟基上 偶联一个葡萄糖残基的衍生化产物,即分支环糊 精。目前国内外对分支环糊精研究的报道还比较 少,对于葡萄糖基(α-1→6)β - 环糊精的波谱学性 质,国内外报道更少,仅有少量关于利用¹³C-NMR 鉴定环糊精衍生物结构的报道^[13]。Tsukuba 对以 α-CD为母体的分支环糊精的¹H-NMR 进行了研 究^[4],但未有对葡萄糖基(α-1→6)β - 环糊精波谱 学数据的完整报道。而研究环糊精的包合作用,环 糊精的波谱学数据非常必要。

作者通过酶法合成葡萄糖基(α -1→6)β - 环 糊精,并用波谱学方法对葡萄糖基(α -1→6)β - 环 糊精结构进行了鉴定,首次对其红外(IR)光谱、氢 谱(¹H-NMR)、氢氢相关谱(¹H-¹H COSY)、氢氢完 全相关谱(¹H-¹H TCOSY)、异核单量子相干相关谱 (HSQC)和异核多键相关谱(HMBC)进行了解析报 道,并对所有的¹H-NMR和¹³C-NMR 谱进行了归 属^[5-7]。

1 材料与方法

1.1 仪器与试剂

高效液相色谱仪: Agilent 1000Seriesm,检测器 为 Alltech ELSD 2000ES 蒸发光散射检测器,色谱柱 为 Hypersil NH₂柱, Agilent 公司产品;傅立叶变换红 外光谱仪(Nicolet Nexus FT-IR spectrometer):Thermo Electron 公司产品;核磁共振波谱仪:AV-400,美 国 bruker 公司产品;串联质谱仪:API3000 美国 ABI 公司产品。

酸性普摩塑劈孢杆菌普鲁蓝酶 ,糖化酶 :诺维

信公司产品 ;Glu-β-CD 标准品 :SIGMA 公司产品 ; 麦芽糖 β-环糊精 ,无水乙醇 :分析纯。

1.2 样品制备

样品采用酶法合成,合成途径见图1。以麦芽 糖和环糊精为底物,利用普鲁兰酶合成麦芽糖基环 糊精,然后在淀粉糖化酶的作用下,麦芽糖基环糊 精水解掉一个葡萄糖,生成葡萄糖基环糊精,然后 对产物进行分离纯化。

Fig. 1 Methods to produce Glu-β-CD

2 结果与讨论

2.1 纯度测定

对纯化后的样品进行 HPLC 分析,结果表明纯度大于 99%,符合结构鉴定所需纯度。

2.2 红外光谱

样品 Glu-β-CD 的红外谱光中(见图 2),3 415 cm⁻¹为糖类 O—H 的伸缩振动,存在分子内氢键, 2 926 cm⁻¹为糖类 C—H 的伸缩振动,1 402 cm⁻¹为糖 类 C—O—H 的弯曲振动,1 156 cm⁻¹为吡喃糖环内 醚的 C—O—C 伸缩振动,1 079 cm⁻¹为吡喃环的 C—O—H 伸缩振动,945 cm⁻¹、703 cm⁻¹和 576 cm⁻¹ 是包括 α-1 A 在内的环糊精骨架振动,1 027 cm⁻¹为 C—H 的伸缩振动,833 cm⁻¹为吡喃糖的 α 型 C-H 弯曲振动的特征峰,表明所含糖全都为 α 构型。

2.3 质谱

样品的电喷雾电离质谱(ESI-MS)(见图3)显示:样品与 NH_{4+} 、 Na^+ 及 H^+ 分别形成的准分子离子 [M+NH₄]⁺和[M+Na]⁺以及[M+H]⁺的m/z分 别为1315.0、1320.2和1298.0 样品相对分子质 量为1297,与理论计算所得到的Glu-β-CD的相对 分子质量一致。

Fig. 2 MS spectrum of Glu-β-CD

2.4 核磁共振谱

2.4.1 ¹H-NMR 谱 考察 GCD 的结构,依次命名 为葡萄糖残基 A-R,其中葡萄糖残基 R 与其他葡萄 糖残基的差异较大,葡萄糖残基 A 的 C-6 与其他糖 残基差异较大,葡萄糖残基 R 的 C-4 是游离的。

¹H-NMR 谱(见图4)显示出两种糖的异头质子 的化学位移 δ 分别为 4.94 和 5.06,分别归属于葡 萄糖残基 R 的 H-1 和葡萄糖残基(A-G)的 H-1。根 据化学位移(大于 4.8)可判定 R 和 A-G 的异头质 子都为 α 型。两种信号面积积分比为 1:7,即两种 异头质子的数目比为 1:7,表明化合物中葡萄糖残 基有两种连接方式,且葡萄糖残基 R 和 A-G 的数目 比为 1:7,这与 Glu-β-CD 的结构相对应。

2.4.2 ¹H-¹H COSY 谱和¹H-¹H TCOSY 谱 在 ¹H-¹H TCOSY 谱(图略)中,葡萄糖残基(A-G)与葡 萄糖残基 R 的氢谱分属两种自旋体系,这也与 Gluβ-CD 结构中葡萄糖残基 R 以 α-1 β 糖苷键连接到 环糊精主环的结构特征相吻合。根据¹H-¹H COSY 谱(图略)结合¹H-¹H TCOSY 谱,由葡萄糖残基(A-G)的 H-1 入手, δ 3.65 与(A-G)的 H-1 有耦合关 系,可确定 δ 3.65 为(A-G)的 H-2 δ 3.96 与(A-G) 的 H-2 有耦容契索,可确定 δ 3.96 为(A-G)的 H-3, δ 3. 55 与(A-G)的 H-3 有耦合关系,可确定 δ 3. 55 为(A-G)的 H-4,δ 3. 83 与(A-G)的 H-4 有耦合关 系,可确定 δ 3. 83 为(A-G)的 H-5。由葡萄糖残基 R 的 H-1 入手,δ 3. 55 与 R 的 H-1 有耦合关系,可 确定 δ 3. 55 为 R 的 H-2,δ 3. 71 与 R 的 H-2 有耦 合关系,可确定 δ 3. 71 为 R 的 H-3,δ 3. 43 与 R 的 H-3 有耦合关系,可确定 δ 3. 43 为 R 的 H-4,δ 3. 74 与 R 的 H-4 有耦合关系,可确定 δ 3. 74 为 R 的 H-5。依据 HSQC 谱(图 5),可确定 δ 4. 03 为葡萄糖 残基 A 的 H-6,δ 3. 76 为葡萄糖残基 R 的 H-6,δ 3. 88 为葡萄糖残基(B-G)的 H-6。在¹H-NMR 谱中 葡萄糖残基(A-G)与葡萄糖残基 R 的有些氢的信 号发生重叠。全部¹H-NMR 信号归属见表 1。

2.4.3 HSQC 谱 在 HSQC 谱中,根据糖残基的质 子信号可以归属与之相连的碳信号,同理依据碳信 号也可以归属与之相连的氢信号,氢信号归属见表 1。

表 1 Glu-β-CD 在 D_2O 中氢谱的化学位移(×10⁻⁶)

Tab. 1 ¹ H-NMR chemical shift of Glu- β -CD in D₂ O(\times 10⁻⁶)

位置	H-1	H-2	Н-3	Н-4	Н-5	Н-6			
A-G	5.06 (d)	3.65 (m)	3.96 (t)	3.55 (m)*	3.87 (m)*				
А						4.03 (d)			
B-G						3.88 (m)*			
R	4.94 (d)	3.55 (m)*	3.71 (d)	3.43 (t)	3.74 (d)	3.76 (d)			
标记(**)的为重叠信号									

2.4.4 ¹³C-NMR 谱 在¹³C-NMR 谱(见图 5)中,葡 萄糖残基 R1、R4、A6 比较容易辨认,因为它们的化 学位移与其他碳相差较大。根据葡萄糖残基(A-G) 和 R 的异头碳 C-1 的化学位移,也可以确定化合物 中所有的葡萄糖残基都是 α 构型。结合 HSQC 谱, 对¹³C-NMR 谱的归属见表 2。

2.4.5 HMBC 谱 HMBC 谱中,葡萄糖残基 (A-G)的δ_H 5.06(H-1)和δ_c 80.82(C-4)(A-G) 的

表 2 Glu-β-CD 在 D₂O 中碳谱的化学位移(×10⁶) Tab. 2 ¹³C NMR chemical shift of Glu-β-CD in D₂O(×10⁶)

位置	C-1	C-2	C-3	C-4	C-5	С-6
A-G	101.35	71. 58	72. 51	80. 82	71.41	
А						66.62
B-G						59.82
R	98. 54	70. 91	72. 51	69. 01	71.41	59.82

 $δ_c$ 101. 35(C-1) $π δ_H 3.55$ (H-4) 以及葡萄糖残基 A $n δ_c 66.62$ (C-6) $π n a a a a b δ_H 4.94$ (H-1) 有耦合峰。表明葡萄糖残基 A-G 之间的某一个糖 残基的 C-1 与另外一个糖残基的 H-4 是相连的,同 时糖残基 A-G 之间的某一个糖残基的 C-4 与另外 一个糖残基的 H-1 是相连的。这与 Glu-β-CD 的结 构中吡喃葡萄糖环以 α-1 A 糖苷键的方式首尾连接 成环糊精相符。葡萄糖残基 A 的 $δ_c 66.62$ (C-6) πR $n δ_H 4.94$ (H-1)的耦合峰表明,葡萄糖残基 A 的 C-6 与 R n H-1 是相连的,这与 Glu-β-CD 结构中葡 萄糖残基 A π H 之间的 α-1 6 糖苷键的连接方式 相符。

参考文献(References):

- [1] KOIZUMI K, UTAMARA T, SATO M, et al. Isolation and characterization of branched cyclodextrins J]. Carbohydrate Res, 1986, 153 55 - 67.
- [2] Koizumi K, Tanimoto T, Okada Y, et al. Isolation and characterization of three positional isomers of diglucosylcyclomaltoheptaose
 [J]. Carbohydrate Res ,1990, 201:125 134.
- [3] Tanimoto T, Sakaki T, Koizumi K. Preparation of 6¹. 6²-, 6¹. 6³-, 6¹. 6⁴- and 6¹. 6⁵-di-O-(-D-glucopyranosyl) cyclomalto-octaoses[J]. Carbohydrate Res, 1995 267 27 – 37.
- [4] Yasuko I, Tadashi N, Kenji K, et al. ¹H-NMR Spectra of branched-chain cyclomaltohexaoses(α-cyclodextrin) J]. Carbohydrate Res 2004, 339 777 – 785.
- [5] 宁永成. 有机化合物结构鉴定与有机波谱学[M]. 北京 科学出版社, 2000 27-217.
- [6]常建华,董绮功.波谱原理及解析 M].北京 科学出版社,2001.
- [7] Watanabe N, Yamamoto K, Tsuzuki W, et al. A novel method to produce branched α-cyclodextrins :pullulanase-glucoamylasemixed method J]. Journal of Fermentation and Bioengineering ,1997 83(1) 43-47.
- [8] Abe J ,Mizowaki N , Hizukuri S. Synthesis of branched cyclomalto-oligosaccharides using Pseudomonas isoamylase J]. Carbohydrate Research , 1986 ,154 81 - 92.

(责任编辑 :朱 明)