Vol. 26 No. 1 Jan. 2007

文章编号:1673-1689(2007)01-0051-03

超声波辅助提取烟叶中的茄尼醇

张泽生, 冯旭

(天津科技大学 食品与生物技术学院,天津 300457)

摘 要: 茄尼醇是一种重要的医药中间体。通过正交试验确定超声波辅助提取烟叶中的茄尼醇最优工艺条件为:以丙酮为提取溶剂 料液比 1: 17.5(g/mL) 温度 60 $^{\circ}$,浸提 2 h ,超声波功率 160 $^{\circ}$ 从其中浸提时间是影响茄尼醇提取率的主要因素。

关键词:茄尼醇;烟叶;超声波;提取

中图分类号 :Q 5-3

文献标识码:A

Study on Ultrasonic-Assisted Extraction of Solanesol from Tobacco Leaves

ZHANG Ze-sheng, FENG Xu

(College of Food Engineering & Biotechnology ,Tianjin University of Science & Technology , Tianjin 300457 , China)

Abstract Solanesol is an important intermediate material of medicine. Ultrasonic – assisted extraction was used to extract solanesol from tobacco leaves, the optimum extraction parameters were chosen as follows by orthogonal design: acetone as solvent, temperature $60~^{\circ}\text{C}$, extraction time 2 h, ratio of leaves: solvent at 1: 17.5 and ultrasonic power 160 W, extraction time was the key factor affect the extraction rate.

Key words: solanesol; tobacco leaves; ultrasonic; extraction

茄尼醇(壬异戊二烯醇 ,Solanesol)是一种不饱和的聚异戊二烯醇 ,是由 9 个异戊二烯单元组成的一种非环萜烯醇 ,分子式为 $C_{45}H_{74}O$,相对分子质量为 631.079 熔点是 41~°C ;其结构式为

H— CH_1 —C=CH— CH_2 —C=CH—C=CH— CH_2 —C=CH— CH_2 —C=CH—C=

茄尼醇主要存在于烤烟的烟叶中,1956年 Rowland 等首先将其作为非挥发性中性物质从烤烟 中提取出来 "Narasimha C. V. 等报道了从土豆叶和桑叶中提取茄尼醇的方法^[2]。

茄尼醇可通过化学方法合成^[3],但是工业生产上还是从烟草中提取茄尼醇。茄尼醇提取的原料可以是烟叶、霉烟或碎烟末等废弃烟叶以及提取过烟碱的烟叶。由于原料的不同提取工艺流程有所不同,但都是有机溶剂萃取,但萃取效率较低,耗时长。为了提高生产效率,有学者研究了超临界萃取^[4-5]和微波萃取^[6]技术。但此方法工业化生产困难。

超声技术用于植物有效成分的提取具有明显的优势 利用超声波产生的强烈振动、空化效应、搅拌作用等可以加速植物有效成分进入溶剂,提高提

取率,有效缩短提取时间。作者应用超声技术对烟叶中的茄尼醇进行提取,通过正交试验探讨溶剂种类、萃取时间、超声波功率、料液比、萃取温度5种因素对超声波提取效果的影响。

1 材料与方法

1.1 实验材料及仪器

茄尼醇标准品:质量分数为97.73%,潍坊安隆生物医药技术有限公司产品;烟叶:天津卷烟厂生产;甲醇和乙醇为色谱纯,正己烷、丙酮、乙酸乙酯和氢氧化钾为分析纯。

KQ5200DB 型数控超声波清洗器:昆山市超声仪器有限公司生产。LabAliance 高效液相色谱仪:美国蓝博公司产品;色谱条件:Kromasil C18 (5U 250 × 4.6 mm)色谱柱,检测波长 213 nm,柱温30 ℃,流动相 V(甲醇): V(乙醇)=4:1混合液,体积流量1.0 mL/min,进样量20 μ L,灵敏度1.0 × 10^{-5} 。

1.2 实验方法

称取粉碎后的烟叶 10 g 加入 250 mL 的烧瓶

中,再加入一定体积的萃取溶剂,置于超声波发生器中,设置超声波功率和时间,在50 Hz下萃取,萃取完成后,用冷水冷却至室温,过滤,旋转蒸发脱除溶剂得茄尼醇粗品。

取 5 g/dL KOH 的 CH_3OH 溶液置于三颈瓶中,加热至 60 °C,取茄尼醇粗品溶于少量石油醚中,将该溶液缓缓倒入三颈瓶中,同时进行搅拌,反应 4 h 后冷却,加入少量去离子水,用石油醚萃取 $3 \text{ 次,在萃取液中加入无水 Na}_2\text{SO}_4$,除去水分,用高效液相色谱仪检测茄尼醇的提取率。

为确定超声波辅助萃取的最佳条件,选择主要因素:溶剂种类(A)、萃取时间(B)、超声波功率(C)、料液比(D)、萃取温度(E),确定不同水平,以茄尼醇提取率为指标,采用 L_{16} (4^5) 正交法设计实验,实验因素水平见表 1。

2 结果与讨论

2.1 正交实验结果及最佳提取工艺 正交实验设计见表 2。

表 1 因素与水平表

Tab. 1 Factors and levels

水平 —							
	溶剂种类	萃取时间/h	超声波功率/W	料液比/(g/mL)	萃取温度/℃		
1	$A_1 = 正己烷$	$B_1 = 0.5$	$C_1 = 112$	$D_1 = 1$: 10.0	$E_1 = 30$		
2	$A_2 =$ 丙酮	$B_2 = 1.0$	$C_2 = 128$	$D_2 = 1$: 12.5	$E_2 = 40$		
3	$A_3 = $ 乙酸乙酯	$B_3 = 1.5$	$C_3 = 144$	$D_3 = 1$: 15.0	$E_3 = 50$		
4	$A_4 = $ 乙醇	$B_4 = 2.0$	$C_4 = 160$	$D_4 = 1$: 17.5	$E_4 = 60$		

表 2 正交实验设计 L₁₆(4⁵)及结果

Tab. 2 Orthogonal design $L_{16}(4^5)$ and results

1 ab. 2 Of thogonal design $L_{16}(4)$ and results						
	A	В	C	D	E	茄尼醇
实验序号	溶剂	萃取时间	超声波功率	料液比	萃取温度	提取率/%
1	1	1	1	1	1	56.32
2	1	2	2	2	2	72.85
3	1	3	3	3	3	83.98
4	1	4	4	4	4	91.26
5	2	1	2	3	4	80.65
6	2	2	1	4	3	84.4
7	2	3	4	1	2	84.48
8	2	4	3	2	1	92.31
9	3	1	3	4	2	72.73
10	3	2	4	3	1	77.56
11	3	3	1	2	4	85.39
12	3	4	2	1	3	90.87
13	4	1	4	2	3	73.02

续表2

 实验序号	A	В	С	D	E	 茄尼醇
头视力写	溶剂	萃取时间	超声波功率	料液比	萃取温度	提取率/%
14	4	2	3	1	4	76.4
15	4	3	2	4	1	77.46
16	4	4	1	3	2	81.64
$\phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$	76. 102	70. 680	76. 938	77. 018	75. 912	
k_2	85. 460	77. 803	80. 457	80. 892	77. 925	
k_3	81. 638	82. 828	81. 355	80. 957	83. 067	
k_4	77. 130	89. 020	81. 580	81. 463	83. 425	
R	9.358	18.340	4.642	4.445	7.513	

由表 2 直观分析的结果可以看出 ,延长超声时间 ,可以有效提高茄尼醇提取率 ,增加超声波功率、增加料液比、提高萃取温度都可以少量提高茄尼醇提取率 ,最佳的提取溶剂是丙酮。最佳水平组合是 $A_2B_4C_4D_4E_4$ (即用丙酮作提取剂 ,料液比 1: 17.5 (g/mL) ,温度 60 % ,浸提 2h ,超声波功率 160 %)。而上述正交实验中没有此组合 ,按照该组合进行提取实验所得到的茄尼醇提取率为 94.7% 。

2.2 方差分析

方差分析的结果见表3。

表 3 方差分析结果

Tab. 3 Variace analysis

方差 来源	离差 平方和	自由度	F比	F 临界值	显著性
\overline{A}	223. 573	3	4. 394	9. 280	
B	724. 077	3	14. 231	9. 280	*
C	55. 574	3	1.092	9. 280	
D	50. 881	3	1.000	9. 280	
\boldsymbol{E}	168.505	3	3.312	9.280	
误差	50.880	3			
<u> </u>	0 0 =				

由表 3 可以看出 ,影响茄尼醇提取率的主要因素是浸提时间 ,其次是提取溶剂和温度 ,而超声波功率和料液比对结果影响较小 ,所以为了有效提取出烟叶中的茄尼醇 ,就要延长浸提时间 ,同时提取溶剂和温度的选择也很重要。

3 结 论

茄尼醇在植物中一部分是以茄尼醇酯的形式存在的,若不经过皂化处理,只能检测出游离态茄尼醇,结果偏低,所以要想准确检测茄尼醇的提取率 检测之前必须皂化。

超声技术用于植物有效成分的提取具有明显的优势,与有机溶剂浸提法相比,超声波辅助提取具有萃取速度快,萃取效率高,溶剂用量少,操作步骤简单等优点。作者应用正交实验分析了超声波辅助提取烟叶中茄尼醇的工艺条件,获得了提取的最佳工艺参数,取得了很好的提取效果。

参考文献(References):

- [1]宋金勇,王超杰,赵瑾,等. 茄尼基胺类化合物的合成方法研究(I):N_N-二(酰氧基乙基)茄尼基胺的合成[J].应用化学, 2002, 19(6):600-602.
 - Song Jinyong , Wang Chaojie Zhao jin , et al. Study on synthesis of solaneso[J]. Applied chemistry , 2002 ,19(6) 500 602. (in Chinese)
- [2] Narasimha C V, Chakraborty M K. Solanesol from tobacco waste[J]. Research and Industry, 1979 24 83 86.
- [3] Tsuji Masahiro. Preparaton of (2Z)-solanesol as antihypertensive, antihyperlipidemic, and antiumor agent(P]. 日本专利(JP): 0665128,1994-03-08.
- [4] Wang Z. Process and equipment for rectifying tobaccoby supercritical multi—element fluid extraction [P]. 中国专利(CN): 1302568 2001-07-11.
- [5] Yang Q, Wu J. Process for extracting solaneso [P]. 中国专利(CN):1294111, 2001-05-09.
- [6]张征,武永昆. 微波辅助萃取废烟叶中茄尼醇工艺研究[J]. 云南化工 2005(2)7-10.

Zhang Zhen , Wu Yongkun. Microwave-assisted Extraction of solanesol from tobacco leaves[J]. **YunNan Chemical Industry** , 2005(石) 点数瞩(in Chinese) (责任编辑:杨 萌)