文章编号:1673-1689(2008)06-0048-05

鹅颈软包装方便食品的加工技术

蔡丽华1, 马美湖2

(1. 湖南农业大学 食品科技学院,湖南 长沙 410128; 2. 华中农业大学 食品科技学院,湖北 武汉 430070)

摘 要:在以鹅颈为原料的方便食品中,作者研究了腌制、卤煮、外拌料 3 个环节的配方和工艺条件。得到较佳的配方和工艺条件为:腌制时食盐质量浓度为 6 g/dL、腌制时间 7 h;卤煮时辣椒用量 4 g/dL、食盐 3 g/dL、卤煮时间 60 min;外拌料时豆瓣酱 20 g/dL、调味粉 3 g/dL、芝麻油 2.5 g/dL、精炼油 20 g/dL。

关键词: 鹅肉:鹅颈制品;酱卤制品;方便熟食

中图分类号:TS 205.2

文献标识码:A

The Research of Gooseneck Soft Packaging Convenience Food

CAI Li-hua¹, MA Mei-hu²

(1. College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China; 2. College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China)

Abstract: Goose is a kind of nutrient and healthy food clue to the high protein, low fat. This manuscript was to achieve a technology that could produce the convenience food of gooseneck. For this, the salt system, the bittern and cooking system and the outside mixed system were studied, and a serials of interesting results were achieved: the pickling salt concentration was 6 g/dL and the time 7 h, in the bittern and cooking link, the capsicum dosage was 4 g/dL and the salt concentration 3 g/dL and cooking time 60 min; in outside seasoning link, 20 g/dL soy bean paste, 3 g/dL seasoning powder, 2.5 g/dL sesame oil and 20 g/dL refined oil.

Key words; goose; gooseneck products; sauce bittern product; convenience food

鹅肉是理想的高蛋白、低脂肪的营养健康食品,它含有人体生长发育必需的各种氨基酸,其组成接近人体所需氨基酸比例,从生物学价值上来看,鹅肉是全价蛋白质。鹅肉中脂肪含量较低,仅比鸡肉高一点,比其他肉类低得多。鹅肉不仅脂肪含量低,而且品质好,不饱和脂肪酸质量分数高达

66.3%,特别是亚麻酸质量分数高达4%。

中国是鹅原料生产大国,同时也是鹅产品消费大国。随着人民生活水平的不断提高,对肉类结构的重新认识以及烹调技术的传播,鹅产品在国内市场有着巨大的消费潜力,已形成了比较著名的品牌。如:广东烤鹅、南京盐水鹅、江苏糟鹅、宁波冻

收稿日期:2007-09-08.

基金项目:广东省重大科技攻关项目(2005A203033001)。

作者简介: 蔡丽华(1985-),女,湖南常德人,食品科学专业硕士研究生.

*通讯作者: 马美湖(1957-),男,湖南常德人,农学博士,教授,博士生导师,主要从事食品生物技术、畜产食品科学理论与农副产品综合利用方面的研究. Email: mameihuhn@yahoo. com. cn

鹅,还有具有潮洲菜式的"香芋扣鹅片"、"梅子甑鹅"等,都是餐桌上的美味佳肴。但这些均属初加工产品,多数是采用民间传统烹调技术,产品附加值较低,而且产品的保存期短,难以进入国际市场,这些状况制约了养鹅业的规模化、产业化发展及出口创汇能力。因此,在总结我国民间传统加工技术的基础上,开展鹅产品的深加工、包装等技术的研究已成为一种趋势。

作者着力于研究适用于生产方便鹅食品的工艺配方和控制条件。在保持产品传统风味的基础上,延长产品保质期,缩短生产周期,增加产品附加值,实现鹅产品的卫生、方便,安全,使其成为受大众喜爱的美味食品。

1 材料与方法

1.1 材料

- 1.1.1 实验原料 原料为产于广东省清远县的乌 棕鹅,购于长沙市五里排畜产品冷库。
- 1.1.2 主要輔料 市售加碘食盐、市售障县豆瓣酱、市售干辣椒(小米椒);香辛料有八角、桂皮、香叶、花椒、丁香、料酒、草果、豆蔻、红曲红色素、葱节、姜块等[1]。
- 1.1.3 主要设备 电子秤、铝锅、高压灭菌锅、真空封口机等。

1.2 方法

- 1.2.1 卤汁基本配方 八角 0.6 g/dL、桂皮 0.16 g/dL、香叶 0.06 g/dL、花椒 0.2 g/dL、丁香 0.1 g/dL、葱节 1.2 g/dL、姜块 1 g/dL、草果 0.2 g/dL、豆蔻 0.24 g/dL、红曲红色素 0.5 g/dL、鲜汤 100%^[2]。
- 1.2.2 工艺流程 市售鹅→解冻→剔净鹅颈→腌制→焯水→卤煮→冷却→切割→装袋→真空热封→高温杀菌→成品检验。

1.2.3 操作要点

- 1) 卤汁的制备: 先将干辣椒剪成节,块状香料用清水稍泡,沥水。同时用猪筒子骨熬制鲜汤。最后净锅上火,放入精炼油烧至三成熟,下入干辣椒节、香辛料稍炒,掺入鲜汤、红曲红色素、精盐烧开后改用小火熬煮2h,至逸出辣味、香味^[3]。
- 2) 解冻: 冷冻的鹅解冻一般需 6 h 左右,用流水冲洗即可[4]。
- 3) 剔净鹅颈:去掉鹅头,鹅身、鹅颈部的皮和附 着在鹅颈上的多余脂肪。
- 4) 腌制: 按姜块 1 g/dL、葱节 1 g/dL、料酒体积分数 2%、亚硝酸钠 0.015 g/dL,食盐拌匀,对原

料干腌几小时后用清水洗净。

- 5) 焯水:将腌制后的原料在沸水中焯一下,使 颈部脊椎管里的脊髓成熟收缩,露出小孔,便于卤 制时辣油汁进入孔内,使骨内也带有辣味[5]。
- 6) 卤煮: 把初加工好的鹅颈放入烧开的卤汁里,用中火卤煮 20~80 min 关火,然后把鹅脖颈继续放入卤汁中浸 30 min,随后捞出晾凉即可^[6-7]。
- 7) 切割: 将加工好的半成品切割成 2~3 cm 长的小块,以便于装入小包装中,此时应尽量避免 半成品的骨头露在外面扎坏包装袋。
- 8) 真空热封:产品采用 PET/AL/CPP 的包装材料,在封口时应注意热合时间较普通塑料包装袋长,本试验中热合时间 7 s,真空度为 0.1 MPa。
- 9) 高温杀菌: 杀菌条件为升温 15 min, 121.1℃保持 30 min, 降温 45 min。
- 10) 成品检验: 按国家标准对产品的一系列理 化指标和微生物指标进行检测。

1.2.4 试验设计

1) 腌制时间和食盐质量浓度对产品风味影响 的试验设计。腌制可以赋予产品更足的风味,考虑 食盐用量和腌制时间的影响,设置了9次试验,见 表1。

表 1 腌制条件试验设计表

Tab. 1 The experimental design table of pickle conditions

食盐质量	腌制时间/h		
浓度/(g/dL)	2	7	12
2	1	2	3
4	4	5	6
6	7	8	9

2) 卤煮条件对产品风味影响的试验设计:考虑了对产品风味影响较大的 3 个卤煮因素:辣椒用量、食盐用量和卤煮时间,结果见表 2。

表 2 卤煮条件试验设计表

Tab. 2 The experimental design table of bittern and cook conditions

		因素	
水平	A辣椒质量浓度/	B食盐质量浓度/	C煮制
	(g/dL)	(g/dL)	时间/min
1	6	5	40
2	4	4	60
3	2	3	80

3) 外调料配方对产品风味影响的试验设计。 考虑了 4 个因素即陴县豆瓣酱、调味粉质量浓度。 芝麻油、精炼油体积分数,共设置了 16 次试验,结 果见表 3。

表 3 外调料环节影响因素试验设计表

Tab. 3 The experimental design of outside seasoning conditions

因 素				
水平	A 陴县豆瓣酱 质量浓度/ (g/dL)	B 调味粉 质量浓度/ (g/dL)	C 芝麻油 体积 分数/%	D 精炼油 体积 分数/%
1	10.	2	2	15
2	15	2.5	2.5	20
3	20	3	3	25
4	25	3.5	3.5	30

1.2.5 测定指标与方法

- 1) 感官指标测定方法: 引用由北京市技术监督局制定的北京市地方标准——(酱卤肉类制品) DB11/059(续)的附录感官检验方法。
- 2) 水分质量分数测定方法:直接干燥法,按 GB9695.15 进行操作。
- 3) 食盐质量分数测定方法: 莫尔法,按GB9695,8进行操作。
- 4) 亚硝酸钠质量分数测定方法:盐酸萘乙二胺 法,按 GB5009.33 进行操作。
 - 5) 菌落总数测定方法: 按 GB4789.2 进行操作。
 - 6) 大肠菌群测定方法: 按 GB4789.3 进行操作。

2 结果与分析

2.1 腌制条件对产品风味的影响

采用的是干腌法。试验发现,不同的食盐质量浓度和腌制时间对产品风味影响较大,见图 1 和表 4。由图 1 可以看出,腌制 7 h 和 12 h 的产品得分明显高于腌制 2 h,而得分最高的是腌制 7 h 的,食盐质量浓度为 6 g/dL,其次是用 4 g/dL 的食盐腌制 12 h。由此可知:适当地提高食盐质量浓度可缩短腌制时间。在生产过程中,可考虑提高食盐质量浓度来缩短时间以降低生产成本。

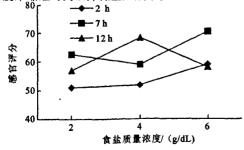


图 1 食盐质量浓度与腌制时间对感官指标的影响

Fig. 1 The effect curve of salt concentration and time to the sensory organ value

表 4 腌制条件产品感官评价结果

Tab. 4 The sensory evaluation results of the pickled conditions

试验号	评分
1	51.0
2	62.6
3	57.0
4	51.8
5	59.0
6	68. 4
7	59. 2
8	70. 6
9	58. 2

2.2 卤煮条件对产品风味的影响

2.2.1 辣椒用量对产品风味的影响 由表 5 可知 R_a>R_e,故辣椒的用量是影响产品风味的重要因素。 当辣椒用量为 6 g/dL 时感官评分最低,而用量为 4 g/dL dL 时得分最高,见图 2。因此,辣椒用量选 4 g/dL。

表 5 卤煮条件试验正交设计表

Tab. 5 The orthogonal design for juice and cook

试验 号	A 辣椒 用量	B 食盐 用量	C 卤煮 时间	D 空列	感官 指标
1	1	1	1	1	56. 4
2	1	2	2	2	59.4
3	1	3	3	3	60.0
4	2	1	2	3	66.2
5	2	2	3	1	60.0
6	2	3	1	2	65.4
7	3	1	3	2	62.4
8	3	2	1	3	62.6
9	3	3	2	1	64.0
Kı	175.8	185.0	184.4	180.4	556.4(T)
K_2	191.6	182.0	189.6	187.2	
K_3	189.0	189. 4	182.4	188. 8	
k_1	58.6	61.7	61.5	60.1	
k_2	63.9	60.7	63.2	62.4	
k ₃	63.0	63.1	60.8	62.9	
R	5.3	2.4	2.4	2.8	

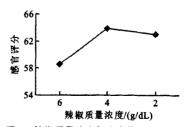


图 2 辣椒质量浓度与感官指标关系图

Fig. 2 The curve between chillies consumption and sensory organ value

续表6

 k_4

R

20.0

3.9

2.2.2 卤煮时间对产品风味的影响 卤煮时间对产品风味影响较大。若卤煮的时间太短,卤汁中的香辣味道无法渗入,骨头也不易嚼碎;但若煮的时间太长,又会导致肉质无弹性,口感粗糙。由图 3 可以看出,煮制 60 min 得分最高,不仅使卤汁人味、骨头软烂且肉质肥嫩,口感较好。

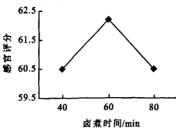


图 3 卤煮时间与感官指标关系

Fig. 3 The curve between cooking time and sensory organ value

2.2.3 卤煮时的最佳控制条件 用极差分析方法 分析得到 A 因素为重要因素,而 B、C 的极差值与 空白的相差不大,也要考虑。故选择最佳方案为: 辣椒 4 g/dL,食盐 3 g/dL,卤煮时间为 60 min。

2.3 外调料条件对产品风味的影响

试验中发现:对于这一类方便休闲食品,外调料的配方非常重要,甚至超过了卤煮条件。所以作者对外调料的配方进行了研究,见表 6。

表 6 外调料条件正交试验表

Tab. 6 Outside seasoning conditions orthogonal test table

	因素					
试验号	A 豆瓣酱 质量浓度/ (g/dL)	B 调味料 质量浓度/ (g/dL)	C 芝麻油 添加量/ %	D 精炼油 添加量/ %	E 空列	感官 指标
1	1	. 2	3	3	2	15.0
2	2	4	1	2	2	19.0
3	3	4	3	4	3	18.8
4	4	2	1	1	3	16.5
5	1	3	1	4	4	15.8
6	2	1	3	1	4	17.0
7	3	1	1	3	1	20.8
8	4	3	3	2	1	22.8
9	1	1	4	2	3	16.8
10	2	3	2	3	3	24.5
11	3	3	4	1	2	19.5
12	4	1	2	4	2	18.3
13	1	4	2	1	1	19.8
14	2	2	4	4	1	20.0
15	3	2	2	2	4	24.0
16	4	4	4	3	4	22.5

		因	素			
试验 号	A 豆 瓣酱 质量浓度/ (g/dL)	B 调味料 质量浓度/ (g/dL)	C 芝麻油 添加量/ %	D 精炼油 添加量/ %	E 空列	感官 指标
K_1	67. 4	72. 9	72.1	72.8	63.4	311.1
K_2	80.5	75.5	86.6	82.6	71.8	
K_3	83.1	82.6	73.6	82.8	76.6	
K_4	80.1	80.1	78.8	72.9	79.3	
k ₁	16.9	18.2	18.0	18. 2	16.0	
k_2	20.1	18.9	21.7	20.7	18.0	
k_3	20.8	20.7	18.4	20.7	19.2	

2.3.1 豆瓣酱用量对产品风味的影响 由表 6 可知,最终产品受豆瓣酱用量影响较大,故在此分析豆瓣酱的用量对产品风味的影响,见图 4。可以看出,当用量达到 20 g/dL时,产品呈现最好风味,若再增加用量只会适得其反。

19.7

3.7

18.2

2.5

19.8

3.8

20.0

2.5

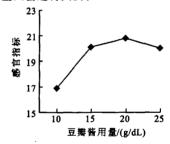


图 4 豆瓣酱用量与感官指标关系图

Fig. 4 The curve between peasouce and sensory organ value

2.3.2 芝麻油与调味粉对产品风味的影响 芝麻油是一种香味较重的油,在使用时若量太大,会影响产品的整体风味。从图 5 中可以看出,当芝麻油为 2.5 g/dL,调味粉为 3 g/dL 时口味较好。

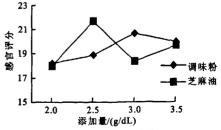


图 5 芝麻油和调味粉与感官指标关系图

Fig. 5 The curve between sesame oil, seasoning powder and sensory organ value

2.3.3 外排料的最佳配方 比较本试验中 $A \setminus B \setminus C \setminus D$ 四个因素中 R 值的大小,可以看出其主次关系

为:A>C>D=B,由此得出豆瓣酱和芝麻油的添加量对试验产品风味影响较显著,而调味粉和精炼油的影响不显著,所以本环节确定配方的最佳组合是 $A_3C_2B_3D_2$,即豆瓣酱质量浓度 20 g/dL,芝麻油添加量 2.5%,调味粉 3 g/dL,油添加量 20%。

2.4 产品感官评定结果

外观:外型良好,虽然煮制时间较长但是产品表面无破损。色泽有较深的红色,表面有光泽,易引起人的食欲。滋气味:有特有的卤制品的辣香味,无异味。组织状态:肉制较软,骨头能嚼碎,内部有辣味,咸淡适宜,口感较辣,香味浓郁。

2.5 产品理化指标测定结果

产品的理化指标测定结果见表 7。产品的理化指标符合北京市地方标准。

表 7 产品理化指标测定结果

Tab. 7 Physical and chemical characteristics of the quality of products results

项目	标准*	指 标
水分质量浓度(g/dL)	€65.0	62.5
盐分质量浓度 (g/dL)	<4.0	3.8
亚硝酸钠质量浓度(mg/kg)	≤30.0	28.0

^{*} 此标准为北京市地方标准(酱卤肉类制品)DB11/059-95

2.6 产品微生物指标测定结果

产品的微生物指标符合国家标准,见表 8。

表 8 产品微生物指标测定结果

Tab. 8 Microbial product quality test results

项 目	标准	指 标
菌落总数(个/g)	≪30 000	27 000
大肠菌群(个/100g)	€70	63

* 此标准为酱卤肉类卫生标准 GB2726-1996

2.7 贮藏时间

由试验工艺与杀菌条件得贮藏时间为常温贮 藏6个月。

3 结 语

- 1) 对于这类软包装方便食品,外调料配方对风味的影响最大,腌制条件和卤煮条件对风味影响较小。所以可以通过调节外调料的配方来满足不同地域消费者的需求。
- 2) 腌制时食盐用量 6 g/dL、时间 7 h; 卤煮时辣椒用量 4 g/dL、食盐 3 g/dL、时间 60 min;外调料配方为豆瓣酱 20 g/dL、调味粉 3 g/dL、芝麻油添加量 2.5%、精炼油添加量 20%。

参考文献(References):

- [1] 陈明造,郭秀兰. 卤制食品制作技术[J]. 山东食品科技,2001(1):4.
 - CHEN Ming-zhao, GUO Xiu-lan. The technology of making salted food[J]. Food Science of Shandong, 2001(1):4, (in Chinese)
- [2] 杨龙江,戴瑞彤,吴国强,香辛料及其在肉制品中的应用[J]. 肉类工业,2001(1);8-12.
 YANG Long-jiang, DAI Rui-tong, WU Guo-qiang. Aroma which using in the meat product[J]. **Meat Industry**, 2001(1); 8-12. (in Chinese)
- [3] 薛志勇. 酱鸭的制作[J]. 肉品卫生,2003(5):41-42.

 XUE Zhi-yong. The skill of making sauce duck[J]. Meat Hygiene,2003(5):41-42. (in Chinese)
- [4]马美湖. 腌制腊肉制品[M]. 北京:金盾出版社,2002:3-5.
- [5] 钟耀广,王书杰,李长胜. 酱卤制品在煮制过程中发生的肉质变化[J]. 畜禽业,1999(12):55-60. ZHONG Yao-guang, WANG Shu-jie, LI Chang-sheng. The change of meat structure of salt and sauce food in cooking process[J]. Livestock and Poultry Industry, 1999(12):55-60. (in Chinese)
- [6]马美湖,葛长荣.动物性食品加工学[M].北京:中国轻工业出版社,2003:129-141.
- [7]张坤生, 肉制品加工原理与技术[M]. 北京: 中国轻工业出版社, 2005; 23-45.
- [8] 冯敏杰. 周惠明. 钱海峰. 鹅血中转铁蛋白质的分离纯化及其性质[J]. 无锡轻工大学学报,2004,23(1);94-98. FENG Min-jie, ZHOU Hui-ming, QIAN Hai-feng. Segregation and purification of trans-iron protein in goose blood[J]. Journal of Wuxi light Industry University, 2004,23(1);94-98. (in Chinese)
- [9]中华人民共和国卫生部,中国国家标准化管理委员会. GB/T4789-2003 食品卫生微生物学检验[S]. 中华人民共和国国家标准. 北京:中国标准出版社出版,2004、
- [10] 江汉湖. 食品微生物学[M]. 北京:中国农业出版社出版,2002.
- [11] 谭敬军. 食品分析实验[Z]. 长沙:湖南农业大学食品科技学院食品化学教研室,2005:1-44.

(责任编辑:李春丽)