文章编号: 1673-1689(2010)04-0634-07

基于剖面隐马氏模型的多序列比对

李成渊1, 龙海侠2, 孙俊1, 须文波*1

(1. 江南大学 信息工程学院, 江苏 无锡 214122; 2. 江南大学 教育学院, 江苏 无锡 214122)

摘 要: 多序列比对被称为NP完全问题, 是生物信息中最基本的问题之一。目前, 广泛使用剖面 隐马尔可夫模型解决多序列比对问题。作者在粒子群优化算法的基础上, 提出了将量子粒子群优 化算法用于剖面隐马尔可夫模型的训练过程, 进而构建了一种基于剖面隐马氏模型和量子粒子群 优化算法的多序列比对算法。从核酸序列和 BaliBASE 比对数据库中选取了一些比对例子进行了 模拟实验, 并与其他算法进行了比较, 结果表明, 所提出的算法能在有限的时间内不仅能找到理想 的隐隐马尔可夫模型, 而且能得到最优的比对结果。

关键词:多序列比对; 剖面隐马尔可夫模型; 量子粒子群优化算法
 中图分类号: Q 811.4
 文献标识码: A

Multiple Sequence Alignment Based On the Profile Hidden Markov Model

LI Cheng-yuan¹, LONG Hai-xia², SUN Jun¹, XU Wen-bo^{*1} (1. School of Information Technology, Jiangnan University, Wuxi 214122, China; 2. School of Education, Jiangnan University, Wuxi 214122, China)

Abstract: Multiple sequence alignment (MSA), known as NP complete problem, is one of the basic problems in computational biology. At present Profile Hidden Markov Model (HMM) was widely used in multiple sequence alignment. This manuscript presented the quantum-behaved particle swarm optimization (QPSO) which was based on particle swarm optimization. The proposed algorithm was used to optimize the profile HMM. Furthermore, an integration algorithm based on the profile HMM and QPSO for the MSA was constructed. Then the approach was evaluated by a set of standard instances which are chosen from nucleotides sequences and the benchmark alignment database, name as BA liBASE. Finally our results are compared with other algorithms. The result shown that the proposed algorithm not only finds out the perfect profile HMM, but also obtains the optimal alignment of multiple sequence.

Key words: multiple sequence alignment, profile hidden markov model, quantum-behaved particle swarm optimization

核苷酸或氨基酸的多序列比对或联配是生物 信息学中最重要、最具有挑战性的任务之一。多序

收稿日期:2009-08-07

作者简介: 李成渊(1980-), 男, 江苏无锡人, 生物信息学博士研究生。Email: lichengyuaning@gmail. com

* 通信作者: 须文波(1946-), 男, 江苏无锡人, 教授, 博士生导师, 主要从事生物信息学方面的研究。

Email: xwb_sytu@hotmail.com

635

列比对问题是一个将不等长的多个序列通过插入 空位变成等长的过程,这些位置上的空位代表着相 比对的序列从共同的祖先通过插入/删除操作的进 化过程。利用多序列比对算法得到的最优比对,可 用于找出蛋白质家族的模体(motifs)或保守区域 (conserved domains),可用于预测蛋白质的结构和 功能,也可用于进行系统发育的分析^[1-2]。

目前主要有下列3种策略用于多序列比对。 第一种策略是"渐进比对"策略^[3-4],其基本思想是: 迭代地利用两序列动态规划算法,先由两条序列的 比对开始,逐渐添加新序列,直到所有序列都加入 为止。第二种策略是使用随机优化算法,如模拟退 火算法(SA)^[5],遗传算法(GA)^[6];第三种策略基于 概率模型的隐马尔可夫模型^[7-8]。

本研究中使用第三种策略。在多序列比对的 过程中,隐马尔可夫模型主要解决 3 个问题: 一是 得分问题,二是联配问题,三是训练问题。将得分 问题用来评估模型的性能,联配问题用来实现多序 列的比对,训练问题用来优化模型的参数。最常用 的训练隐马尔可夫模型模型的方法是基于统计和 重估的方法,比如 Baum-Welch 算法。但是 Baum-Welch 算法是一个局部最优算法,使用此算法得到 的最终比对结果通常远离全局最优。最近还出现 了粒子群算法(PSO),此算法也是一个局部最优算 法。 为了克服 Baum-Welch 算法和 PSO 算法的缺 点,我们使用量子粒子群优化算法(QPSO)^[9-10]来 训练隐马尔可夫模型,不仅参数个数少,随机性强, 并且能覆盖所有解空间,保证算法的全局收敛。

1 剖面隐马尔可夫模型的拓扑结构

使用的是一种标准的剖面隐马尔可夫模型的 拓扑结构用于多序列的比对, 最初由 Krogh et al. (1994)^[7]提出的,见图 1。该模型包含了一系列的 状态 $(S_1, S_2, ..., S_n)$ 这些状态被分成 3 组, 分别是 匹配状态(M)、插入状态(I)和缺失状态(D)。该模 型是包含这3种状态重复集的简单的从左至右的 结构。为了研究的方便,再引入了两个额外的状 态:开始状态(begin)和结束状态(end)。状态之间 通过转移概率 aij 相联系,转移概率具有下面的性 质: $a_{ij} \ge 0, 1 \le i, j \le n$ 并且 $\sum a_{ij} = 1, 1 \le i \le n_o$ 一个匹配状态或一个插入状态按照一定的符号发 出概率 $b_{j}(k)$ 发出一个可见符号 v_{k} ,符号发出概率 具有下面的性质: $b_i(k) \ge 0, 1 \le j \le n, 1 \le k \le M$ 并且 $\sum b_i(k) = 1, 1 \leq j \leq n$,这里 *M* 为每个符号对 应的观察符号数目。缺失状态、开始状态、结束状态 都不发出任何符号。

图 1 用于多序列比对的隐马尔可夫模型 Fig. 1 An example of a simple HMM of length 3 for MSA

当使用图 1 所示的隐马尔可夫模型进行多序 列比对时,每条序列从开始到结束通过这些状态穿 越模型,在这些待比对序列中进行空位字符"-"的插 = $(a_{ij})_{m \times n}$,其中 $a_{ij} \in dph_{set} \cup \{-\}$ 。矩阵 *A* 中的 每一列为一个位点上的比对,矩阵 *A* 的第 *i* 行对应 参与比对的第 *i* 个序列,序列中非空字符的先后顺 序在比对中保持不变。

入和删除操作,得到一个多序列比对结果的矩阵A 序在比对中保持不变。 © 1994-2013 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net 2 基于剖面隐马尔可夫模型和QPSO 的多序列比对

用量子粒子群优化算法训练剖面隐马尔可夫 模型时,每一个粒子代表一个隐马尔可夫模型,通 过不断的更新粒子的位置来优化隐马尔可夫模型。 在训练中保持模型的长度不变,仅仅优化模型的参 数:转移概率和符号发出概率。对图1所示的隐马 尔可夫模型的拓扑结构,我们取待比对序列的平均 值 *m* 为模型的长度, 不考虑初始状态和结束状态, 则模型的状态数为 3m + 1. 状态转移概率参数为 3(3m+1)个;设字符集大小为 | A | ,共有(2m+1) |A| 个符号发出概率。所以每个粒子是维数为9m+3 + (2m + 1) | A |的一个实数编码串。所以DNA 模 型的参数个数是17m+7,蛋白质模型的参数个数是 49m + 23。根据转移概率和符号发出概率的性质,在 对粒子对应的隐马尔可夫模型模型进行评价前,需 要先对隐马尔可夫模型中的状态转移概率和符号 发出概率进行归一化. 以满足 3m + 1 个转移概率归 一化约束方程和 2m + 1 个符号发出概率归一化方 程。

根据粒子群算法训练的结果,得到全局最优的 粒子对应的隐马尔可夫模型,接下来用此模型使用 Viterbi 算法进行序列的比对,得到最优的比对结 果,并用基于 SP(sum of pairs)打分系统的目标函 数评估比对的结果。

在整个算法的过程中,根据剖面隐马尔可夫模型的拓扑结构,所使用的转移概率的形式见表1所示。

140.1	The transition proba	Dillty
M 的转移	1的转移	D 的转移
$M_i \xrightarrow{\rightarrow} M_{i+1}$	$I_i \xrightarrow{\rightarrow} M_i$	$D_i \xrightarrow{\rightarrow} M_{i+1}$
$M_i \xrightarrow{\rightarrow} I_{i+1}$	$I_i \xrightarrow{\rightarrow} I_i$	$D_i \xrightarrow{\rightarrow} I_{i+1}$
$M_i \xrightarrow{\rightarrow} D_{i+1}$	$I_i \xrightarrow{\rightarrow} D_i$	$D_i \xrightarrow{\rightarrow} D_{i+1}$

表1 转移概率

2.1 模型的训练问题

2.1.1 量子粒子群优化算法(QPSO) PSO^[11] 是 基于种群的进化搜索技术,但是所有基本和改进的 PSO 算法不能保证算法的全局收敛^[12]。因为 PSO 的进化方程式使所有粒子在一个有限的样本空间 中搜索。根据粒子群的基本收敛性质,受量子物理 基本 理论的启发, Sun 等人提出了 QPSO(Quantum-behaved Particle Swarm Optimization^[9-10] 算 法是对整个 PSO.算法进化搜索策略的改变,进化方 程中不需要速度向量,形式更简单,参数更少且更 容易控制。

在 QPSO 算法中, 粒子按照下面 3 个公式进行 更新:

$$p = (\Psi_{1} \times P_{id} + \Psi_{2} \times P_{gl} / (\Psi_{1} + \Psi_{2})$$
(1)

$$= \operatorname{Trand}(0, 1); \Psi_{2} = \operatorname{Trand}(0, 1),$$

$$= \operatorname$$

u = rand

2.1.2 评估训练算法的质量 在粒子群优化算法 中,需要评估每个粒子所代表的模型的质量,使用 的评估函数为:

$$\text{Log_odd}(O, \lambda) = -\frac{1}{N} \sum_{i=1}^{N} \frac{\log_2 P(O_s + \lambda)}{l_i} \quad (4)$$

这里 *O* = {*O*₁, *O*₂, ..., *O*_M} 是给定的待比对序 列的集合, 序列的个数为 *M* 个。*l*s 是序列 *O*s 的长 度。Log_odd 的值越大, 说明使用量子粒子群优化 算法训练得到的隐马尔可夫模型, 模型的参数是最 优的, 模型的稳定性和可靠性都较好。

2.2 模型的联配问题

2.2.1 序列联配的过程 给定 3 条待比对序列: 0
(1): AGGCT; 0(2): GAACTGTA; 0(3):
AGCCTTA。按照下面的两个步骤可以得到序列
比对的结果:

 1) 根据 Viterbi 算法和图 1 所示的隐马尔可夫 模型拓扑结构找出每条序列所对应的状态序列,如 图 2 所示,每条序列的氨基酸碱基对应一个匹配状 态或一个插入状态。

O*(1):	М	М	Ι	Μ	Ι				
O(1):	Α	G	G	С	Т				
O*(2):	Μ	Ι	М	Ι	Ι	М	Μ	Ι	
O(2):	G	Α	Α	С	Т	G	Т	Α	
O*(3):	Μ	М	Ι	Ι	М	I			
O(3):	Α	G	С	С	Т	Т			
图 2	每条	序列	刂所ヌ	寸应	的壮	态	亨列		

Fig. 2 Each sequence corresponding to the state sequence

由图 3 生成的状态序列,我们可以进行空位字符'一'的插入操作,见图 3。所有的序列中与匹配状态 *M* 相对应的氨基酸碱基是比对的,这些氨基酸碱基位于同一列;与插入状态 *I*^k 相对应的氨基酸碱 基位于同一列;与插入状态 *I*^k 相对应的氨基酸碱

O*(1):	Μ	D	Μ	Ι	D	Μ	Ι	D
O(1):	Α		G	G		С	Т	
O*(2):	Μ	Ι	Μ	Ι	Ι	Μ	Μ	Ι
O(2):	G	А	А	С	Т	G	Т	А
O*(3):	Μ	D	М	Ι	Ι	Μ	Ι	D
O(3):	Α	_	G	С	С	Т	Т	

图 3 空位字符 - 的插入

Fig. 3 Insert the gap characters '-'

由步骤(1)和步骤(2),得到联配后的序列为图 4 所示。

	Fig	4	Alig	ned s	eque	nces		
	图 4 联配后的序列							
O(3):	Α		G	С	С	Т	Т	
O(2):	G	Α	А	С	Т	G	Т	Α
0(1):	Α		G	G		С	Т	

2.2.2 评估比对序列的质量在利用 Viterrbi 算法获得的路径进行比对后,需要通过基于 SP(sum of pairs) 打分系统的目标函数^[13] 对比对结果进行评估。我们使用下面标准的 sum-of-pairs 打分函数:

SOP =
$$\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} D(l_i, l_j)$$
 (5)

这里, li 是已比对的序列, D 为距离矩阵.

为了避免在比对过程中空位的积聚,我们从 SOP 分数中推演出仿射几何学的空位代价,对于比 对结果中一条序列的空位代价按照下面的公式进 行计算:

 $Gap \ cost = \ GOP + \ n \times GEP \tag{6}$

这里 GOP 表示第一个开口空位的固定罚分, GEP 表示对于扩展的空位的罚分, *n* 为一条序列中 空位的个数。对于已比对的每条序列的空位都要 计算相应的空位代价。多序列比对结果的 SOP 的 分值减去空位代价的总和, 即为 SOP 的分值。

3 实验结果

3.1 实验数据

3.1.1 数据集 1(模拟的核苷酸序列) 使用软件 Rose ^[8]软件产生如下的核酸序列: "low-short" "low-long", "high-short", 和"high-long".

3.1.2 数据集 2(Pfam 数据库中的 3 个蛋白质家 蔟) 3 个蛋白质家族分别为 G5, CagY_M and Interferon, 它们来自 Pfam 数据库^[14], 见表 2。为了 避免隐马尔可夫模型模型中的过拟合, 分别把 3 个 蛋白质家族分成训练集和测试集。

表 2 蛋白质家族 N: 序列的个数, LSEQ: 数列的平均, T: 训练集的大小

Tab. 2 Protein families N: the number of sequences LSEQ: the average of series T: The size of training sets

蛋白质 家族	序列 数量	数列 平均	训练集 大小规模
G5	277	79	150
Cag Y_M	549	31	150
IstB	738	147	150

3.2 实验设置

实验中,我们使用均匀分布初始化所有的种 群;分别使用了 Baum-Welch(BW)、Particle Swarm Optimization (PSO)、Quantum-behaved Particle Swarm Optimization(QPSO)3种算法训练隐马尔 可夫模型,用 Log_odd 目标函数来评估4种训练算 法的性能,并且使用 SOP 打分系统的目标函数来评 估比对效果。每种算法分别迭代1000次,共进行 了 20 次模拟实验。

对于 PSO 算法,使用如下的参数:种群数= 20; 惯性权重($_{\odot}$)从 1.0 到 0.5 线性减少; $c_1 = c_2 = 2.0$ 最大速度 ($v_{max} = 1.0$

对于 QPSO 算法使用如下的参数:种群大小= 20;收缩扩张系数,从 1.0 到 0.5 线性减少;并且, 在 SOP 打分函数中,核酸和蛋白质分别使用下面的 打分矩阵、空位开放和空位扩充。

1) 对于核酸序列,使用 ClustalW 1.81 的 "swgap"置换分数表,空位开放和空位扩充分别为 15、7。

2) 对于蛋白质序列, 使用 BLOSUM 62 打分矩 阵, 空位开放和空位扩充分别为 11、2^[9]。

3.3 实验结果

表 3 给出了核酸序列的结果,这里是以 Log odd score 作为目标函数,用来评估训练隐马尔可夫 模型的质量,从表中可以看出,QPSO 取得了最好 的平均值,PSO 算法的结果和 BW 算法的结果相 当,在 Low-long 序列和 High-long 序列上的结果不 如 BW 得出的结果好,可以说明,PSO 算法随着序 列个数的增加效果不如 BW 的效果好。

表 4 也给出了核酸序列的结果, 这里是以 SOP score 作为目标函数, 用来评估核酸序列的比对的效 果。从表 4 可以看出, QPSO 优于其他所有的算 法, 其次为 CW 工具得出的比对结果优于 BW 和 PSO 算法得出的结果, PSO 算法也是一种局部最优 算法, 对 BW 算法没有多大的改进。 表 3 隐马尔可夫模型得到的核酸序列的 Log_odd scores 平 均值和方差

Tab. 3 HMM log odds scores \pm standard error of Nucleotide sequences

核酸序列	BW 算法	PSO 算法	QPSO 算法
Low-short	394. 6	418.4±7.35	448.8±9.68
Low- long	226.5	215.8±8.26	310.7±4.68
High- short	186. 3	195.6±2.31	253.8±3.45
High-long	280. 8	256.4±8.52	345.8±9.73

COD

表 5~8 概述了 3 个蛋白质家族的隐马尔可夫 模型训练和序列比对的结果。表 5 和表 6 分别给出 了训练集的最优的 Log odd scores 和 SOP scores 的平均值和方差,表 7 和表 8 分别给出了评估集的 最优的 Log odd scores 和 SOP scores 的平均值和 方差。从 4 个表中,可以看出,对于蛋白质家族,无 论是在训练集还是评估集上,QPSO 算法在模型的 训练上和比对的效果上都优于 BW 和 PSO 算法。

表 4 核酸序列比对结果的 SOP 平均值和方差

1ab. 4 SOP scores for the final alignments of Nucleotide sequences								
核酸序列	CW 算法	BW 算法	PSO 算法	QPSO 算法				
Low-short	2 5 14.9	2 024.7	2 154.3±25.36	2 638.4 \pm 20.364				
Low-long	8 760.7	8 623.9	8 430. 8±15. 015 4	9 873.3±18.462				
High- short	4 3 16.5	4 270.2	4 294.7±13.564 3	4 351.9±13.375				
High-long	7 781.7	7 418.2	7 538.5±22.864 5	7 848. 8±29. 688 1				

表 5 隐马尔可夫模型得到的蛋白质序列训练集的 Log_odd scores 平均值和方差

Tab. 5	HMM log-odds scores	\pm standard	l error for	the training	sets of	three	protein	famil ies
--------	---------------------	----------------	-------------	--------------	---------	-------	---------	-----------

蛋白质家族	BW 算法	PSO 算法	QPSO 算法
G5	103. 146	101. 450 0±1. 89	154.94±1.06
Cag Y_M	11.178	20.090 ± 1.14	28.255 ± 0.92
Interferon	158. 314	141.736±2.41	179.549±1.43

表 6 蛋白质序列训练集的最优的 SOP scores 的平均值和方差

Tab. 6 SOP scores for the final alignments of the training sets of three protein families

蛋白质家族	CW 算法	BW 算法	PSO 算法	QPSO 算法
G 5	189	192	176±113.1	229±63.7
CagY_M	- 142	- 138	-120 ± 131.5	- 106±103.37
Interferon	3 226	3 294	3 772±101.4	4 136±98.5

表 7 隐马尔可夫模型得到的蛋白质序列测试集的 Log_odd scores 平均值和方差

Tab. 7 HMM log odds scores \pm standard error for the validation sets of three protein families

蛋白质家族	BW 算法	PSO 算法	QPSO 算法
G5	78.357	141. 450 0 ± 2. 42	154.94±1.12
Cag Y_M	32.832	20.090 ± 2.13	20.255 ± 1.08
Interferon	102. 652	95.736±1.54	179.549±1.28

表 8 蛋白质序列测试集的最优的 SOP scores 的平均值和方差

Tab. 8 SOP scores for the final alignments of the validation sets of three protein families

蛋白质家族	CW 算法	BW 算法	PSO 算法	QPSO 算法
G5	- 836	- 803	- 796±241.2	- 914±85.6
CagY_M	- 795	- 658	- 725±198.4	-804 ± 105.7
Interferon	2 986	2 3 5 2	2 176±341.8	3 215 ± 127. 1

© 1994-2013 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

图 5、6、7 刻画了以 Log odd score 作为目标函数,算法分别运行 20 次得到的核酸序列和蛋白质 序列的平均值的收敛过程。

BW 和 PSO 的收敛速度最快,其次为 QPSO 算法, 但是 QPSO 算法在迭代进行到一半的时候, Log odd score 的值就已经超过 PSO 算法和 BW 算法, 并且在整个运行过程中, QPSO 都在不断的提高自 身的性能,而 PSO 算法和 BW 算法已经早早地收敛 了。

图 8 Low-short 核酸序列的 SOP 平均分数

Fig. 9 Mean SOP scores for training sets of CagY_M protein family

图 10 Interferon 蛋白质序列的 SOP 平均分数

Fig. 10 Mean SOP scores for validation sets of Interfer-

SO 异次的注胎化丁 BW 异次。从收敛还反工自, on protein family © 1994-2013 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net 图 8、9、10 表明了以 SOP score 作为目标函数, 算法分别运行 20 次得到的核酸序列和蛋白质序列 的平均值的收敛过程。收敛情况与上述情况相同。

4 结 语

提出了使用 QPSO 算法来训练剖面 隐马尔可 夫模型的参数,进行多序列的比对. 从实验结果可 以看出,以 Log odd score 作为目标函数, QPSO 算 法相比 BW 算法和 PSO 算法,是一种非常有效的训 练 HMM 模型模型的方法。并且从实验结果还可 以得出,以 SOP 作为目标函数, QPSO 比其他所有 的方法而言, 能产生较好的比对结果。这是因为 QPSO 算法是一种全局收敛算法, 并且需要调整的 参数也比较少。

在计算时间上, QPSO 消耗的时间和 PSO 消耗 的时间相当, 远远大于 BW 算法的运行时间。平均 来说, QPSO 和 PSO 的运行时间为 6 小时, BW 的 运行时间为 5 小时. 并且, 随着序列个数和序列长 度的增加, QPSO 消耗的时间也随着增大。

在进一步的研究工作中,我们将进一步改善 QPSO 算法,来提高 HMM 的性能,减少序列比对 的时间。

参考文献(References):

- [1] GUAN Weihong, XZ-Y, ZHU Ping. Nonlinear prediction analysis of properties in protein sequences(I)[J]. Journal of Food Science and Biotechnology, 2008, 27(1):71-75.
- [2] GUAN Weihong, X. Z.-Y., ZHU Ping. Nonlinear prediction analysis of properties in protein sequences(II) [J]. Journal of Food Science and Biotechnology, 2008, 27(2): 103-105.
- [3] Thompson J D, Higgins D G, Gibson T J. CLUSTAL W: improving the sensitivity of progressive multiple sequence a lignment through sequence weighting, position-specific gap penalties and weight matrix choice[J]. Nud Acids Res, 1994, 22(22):4673-4680.
- [4] Feng D F, Doolittle R. Progressive sequence alignment as a prerequisitetto correct phylogenetic trees [J]. Journal of Molecular Evolution, 1987, 25(4):351-360.
- [5] Kim J, Pramanik S, Chung M J. Multiple sequence alignment using simulated annealing[J]. Comput Appl Biosci, 1994, 10(4):419-426.
- [6] E Jung Lee, S F S, Chen-Chia Chuang, et al. Genetic algorithm with ant colony optimization (GA-ACO) for multiple sequence alignment[J]. Applied Soft Computing, 2008, 8(1):15-17.
- [7] Mamitsuka H. Finding the biologically optimal alignment of multiple sequences[J]. Artif Intell Med, 2005, 35(1-2):9-18.
- [8] Loytynoja A, Milinkovitch M C. A hidden Markov model for progressive multiple alignment[J]. Bioinformatics, 2003, 19(12):1505-1513.
- [9] Jun S, Wenbo X, Bin F. In A global search strategy of quantum-behaved particle swarm optimization [J]. Cybernetics and Intelligent Systems, 2004, 321: 325-331.
- [10] Jun S, Bin F, Wenbo X. In Particle swarm optimization with particles having quantum behavior[J]. Evolutionary Computation, 2004, 321: 325-331.
- [11] Kennedy J, Eberhart R. In Particle swarm optimization [J]. Neural Networks, 1995, 1994: 1942-1948.
- [12] Clerc M, Kennedy J. The particle swarm- explosion, stability, and convergence in a multidimensional complex space[J].
 Evolutionary Computation, 2002, 6(1): 58-73.
- [13] Thompson J D, Plewniak F, Poch O. A comprehensive comparison of multiple sequence alignment programs [J]. Nucleic Acids Res, 1999, 27(13): 2682-2690.
- [14] Sonnhammer E L, Eddy S R, Durbin R. Pfam: a comprehensive database of protein domain families based on seed alignments[J]. Proteins, 1997, 28(3):405-420.

(责任编辑:李春丽)