P. C 及 R. C 电镀时电极表面粗糙度的比较

钱晓芳 刘松琴

(上海轻工业专科学校) (无锡轻工业学院)

摘要 比较了方波脉冲及周期换向电镀时电极表面的粗糙度,结果表明方波脉冲 电流下电极表面粗糙度较少。

关键词 方波脉冲;周期换向;表面粗糙度

0 引 言

在相同的平均电流密度和电沉积时间下,与直流电流(D. C)相比较,由脉冲电流(P. C)和周期换向电流(R. C)所得的电镀层表面更加均匀、致密[1]。这是因为:对于 P. C 及 R. C 电镀,高的瞬时电流密度使得阴极电位由于活化极化而发生很大变化,形成较大的过电位。因此,P. C 及 R. C 电镀将有大量的能量用于形成晶核,这就使得金属电沉积时可形成细密镀层[2~4]。本文依据 K. I. POPOV 等导出的公式,在理论上进一步比较 P. C 及 R. C 电镀层表面的粗糙度。

对于周期为 T 的 R.C 电镀,电镀层表面粗糙度为[3]

$$h_{R.C} = h_0 \exp\left\{ \frac{VI_{av}}{\delta nF} \left[\frac{T}{1 - \gamma} - \frac{32t_0}{\pi^2} \cdot \frac{1 + \gamma}{1 - \gamma} \cdot \sum_{k=0}^{\infty} \frac{1}{(2k+1)^4} \right] - \exp\left\{ -\frac{(2k+1)^2T}{4t_0(\gamma+1)} \right\} \right\}$$
(1)

式中

h--- 电极表面粗糙度

Iav — 平均电流密度

δ--- 扩散层厚度

 $\gamma - R. C + \gamma = \frac{t_a}{t_c}$

 t_0 — 过渡时间 $t_0 = \frac{\delta^2}{\pi^2 D}$ (D 为溶液扩散系数)

V--- 金属摩尔体积

F--- 法拉第常数

收稿日期:1993-01-12

n--- 金属离子电荷数

T---- 周期

$$\gamma = \frac{4t_0}{T} \ln \left(\frac{2}{1 + \exp(-T/4t_0)} \right) \left[1 - \frac{4t_0}{T} \ln \left(\frac{2}{1 + \exp(-T/4t_0)} \right) \right]$$
 (2)

在相同的电沉积时间和平均电流密度下,P.C 电镀层的粗糙度为[4]

$$h_{P.C} = h_0 \exp\left[\frac{VI_{av}T}{\delta nF(P+1)}\right]$$
 (3)

在 P. C 中: $P = \frac{t_{\text{off}}}{t_{\text{on}}}$

1 数学处理

为便于比较 hec 和 hec 大小,先证明二个数学结果:

(1)
$$\sum_{k=0}^{\infty} \frac{1}{(2k+1)^4} = \frac{\pi^4}{96}$$

将函数 $f_{(x)} = x$ 在 $[0,\pi]$ 上展开为余弦级数,则系数项 a 为

$$a_{k} = \frac{2}{\pi} \int_{0}^{\pi} x \cos kx dx = \frac{2}{k^{2}\pi} [(-1)^{k} - 1] = \begin{cases} 0 & k \text{ 5MB} \\ -\frac{4}{\pi k^{2}} & k \text{ 5hB} \end{cases}$$
(4)

$$x = \frac{\pi}{2} - \frac{4}{\pi} \left[\cos x + \frac{\cos 3x}{3^2} + \dots + \frac{\cos (2k-1)x}{(2k-1)^2} + \dots \right]$$
 (5)

将(5)式从0到x连续积分两次得

$$\frac{1}{6}x^3 = \frac{\pi}{4}x^2 - \frac{4}{\pi} \left[-\cos x + 1 - \frac{\cos 3x}{3^4} + \frac{1}{3^4} + \cdots + \frac{\cos(2k-1)x}{(2k-1)^4} + \frac{1}{(2k-1)^4} + \cdots \right]$$
(6)

用 $x=\pi$ 代入(6)式得

$$\frac{1}{6}\pi^3 = \frac{1}{4}\pi^3 - \frac{4}{\pi} \left[2\sum_{k=0}^{\infty} \frac{1}{(2k+1)^4} \right]$$

即:

(2)
$$\sum_{k=0}^{\infty} \frac{1}{(2k+1)^4} = \frac{\pi^4}{96}$$

$$\frac{\pi^4}{96} - \exp\left[-\frac{T}{4t_0(\gamma+1)}\right] > \frac{1}{(2k+1)^4} \left[1 - \exp\left(-\frac{(2k+1)^2T}{4t_0(\gamma+1)}\right)\right]$$

利用(7)式结论

$$\frac{\pi^{4}}{96} - \exp\left[-\frac{T}{4t_{0}(\gamma+1)}\right] = \sum_{k=0}^{\infty} \frac{1}{(2k+1)^{4}} - \exp\left[-\frac{T}{4t_{0}(\gamma+1)}\right]
> \sum_{k=0}^{\infty} \frac{1}{(2k+1)^{4}} - \sum_{k=0}^{\infty} \exp\left[-\frac{(2k+1)^{2}T}{4t_{0}(\gamma+1)}\right]
= \sum_{k=0}^{\infty} \left\{\frac{1}{(2k+1)^{4}} - \exp\left[-\frac{(2k+1)^{2}T}{4t_{0}(\gamma+1)}\right]\right\}
> \frac{1}{(2k+1)^{4}} - \exp\left[-\frac{(2k+1)^{2}T}{4t_{0}(\gamma+1)}\right]$$
(8)

上述结论成立。

2 结果讨论

综合(1)式和(8)式可得

$$h_{\text{R.C}} > h_0 \exp\left\{\frac{VI_{\text{av}}}{\delta nF} \left[\frac{T}{1-\gamma} - \frac{32t_0}{\pi^2} \cdot \frac{1+\gamma}{1-\gamma} \left(\frac{\pi^4}{96} - \exp\left\{-\frac{T}{4t_0(\gamma+1)}\right\}\right)\right]\right\}$$
(9)

将(3)与(9)式相比较可得

$$h_{P.C} < h_{R.C} \exp \left\{ \frac{VI_{av}}{\delta nF} \left[\frac{T}{P+1} - \frac{T}{1-\gamma} + \frac{32t_0}{\pi^2} \frac{1+\gamma}{1-\gamma} \left(\frac{\pi^4}{96} - \exp \left\{ -\frac{T}{4t_0(\gamma+1)} \right\} \right) \right] \right\}$$
(10)

$$\stackrel{\underline{}}{=} \frac{T}{1+P} < \frac{T}{1-\gamma} - \frac{32t_0}{\pi^2} \frac{1+\gamma}{1-\gamma} \left[\frac{\pi^4}{96} - \exp\left(-\frac{T}{4t_0(\gamma+1)}\right) \right]$$
 (11)

则有 $h_{P.C} < h_{R.C}$ 表明,在相同的电沉积时间和平均电流密度下,如不考虑溶液中阴离子的影响,由 P.C 电镀所得镀层比 R.C 电镀层更加均匀、致密。

利用(2)和(11)式,且 $P \ge 1$ 时,容易证明。当 $3t_0 < T \le 16t_0$ 时,(11)式能得到满足(证明过程从略)。

致谢

本文在叶裕中副教授指导下定成,初稿承蒙任志良教授审阅,谨致谢忱。

参考文献

- 1 T. P. Sun, C. C. wan Y. M. Shy, Met. Finish, 1979; (77); 33
- 2 钱晓芳.上海工业大学研究生论文集,1990;(10):74
- 3 K. I. popov etc. ; Surf. Technology 1980; 11:99
- 4 K. I. popov ect. ;Surf. Techrology 1982;16:209

The comparison of electrode Surface roughening in pulsating current and periodic reverse current electrodeposition of metals

Qian Xiaofang

Liu songqing

(Shanghai Training School of LightIndustry) (WuXi Institute of Light Industry)

Abstract Comparison mas made of electrode surface roughening in pulsating current and periodic reverse current electrodeposition. It was shown that less rough deposits were obtained in electrodeposition with a pulsating current.

Key-words pulsating current; periodic reverse current; surface roughening