Vol. 15 1996 No. 3

镀镍液中微量铁测定的研究

陈烨璞 陆潜秋 周 军 任春兰

(化学工程系)

摘要 研究了镀镍液中微量铁的测定方法。采用 5-溴水扬基荧光酮(5-BSAF)为显色剂。在 pH5.0~6.0 介质中,Fe(\blacksquare)与 5-BSAF,CTMAB 形成稳定的三元配合物。其最适测定波长在 605nm. 摩尔吸光系数 ϵ_{605} =1.4×10⁵,有色溶液 2h 内稳定不变,线性范围为 0~7 μ g/25ml,线性相关系数 γ =0.9997,加入回收率在 97.7%~103%之间。高含量的各种镀液成分以及 20 余种物质不干扰测定。

主题词 三元配合物;铁;镍;分光光度法 / 5-溴水扬基荧光酮 中图分类号 O657.321

0 前 言

铁(Ⅱ)在电镀液中的存在常对电镀产生不良影响。故及时准确测定铁(Ⅱ)的含量非常重要。传统的测定方法是在大量铵盐存在下,加氨水使铁沉淀为 Fe(OH)₃,过滤,洗涤,溶解后再以 NaCNS 法进行比色测定^[1]。此法操作步骤多,灵敏度又低,测定结果往往并不满意。作者采用 5-溴水扬基荧光酮(5-BSAF),十六烷基三甲基溴化胺(CTMAB)与 Fe³+形成三元配合物进行比色测定。结果表明摩尔吸光系数达 1.4×10⁵^[4],常用电镀液成分不干扰测定,无需沉淀、分离等前处理操作,测定了镀镍液,镀锌液等样品,结果令人满意。

1 实验部分

1.1 主要试剂与仪器

 $1.00\mu g/ml$ 铁标准液(酸度 0.05 mol/L HCl); $5.0 \times 10^{-4} g/L$ 5-BSAF, (将 50 mg 5-BSAF 溶于乙醇中, 100 ml 容量瓶定容); $5 \times 10^{-3} mol/L$ CTMAB, (将 CTMAB 溶于含乙醇 20%的蒸馏水中); 0.5 mol/L 醋酸-醋酸钠缓冲液。各试剂均为分析纯, 水为二次蒸馏水。

722 型光栅分光光度计, UV-240 型分光光度计, pHS-3 型精密酸度计。

1.2 实验方法

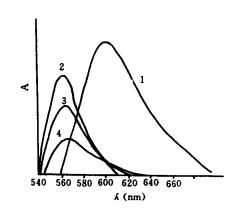
吸取 1.0ml 5-BSAF,5.0ml 缓冲液,1.0ml CTMAB,再加入所需量的含 Fe(I)溶液。用蒸馏水稀释至 25ml 容量瓶刻度,摇匀静置 5min.以试剂为参比,用 1cm 比色皿在 605nm 处测定吸光度。

收稿日期:1995-09-18

2 结果与讨论

2.1 吸收曲线

在 pH5.5 的缓冲液中,试剂与铁以及几种主要显色离子形成配合物的吸收曲线见图 1. 由图 1 可知,铁配合物的有利测定波长在 605nm 处。


2.2 显色条件

分别进行了酸度,5-BSAF 用量、CTMAB 用量、显色时间以及显色温度的试验。结果表明,合适的显色条件是:pH 为 $5\sim6$;5-BSAF 用量为 $0.8\sim2$. 0ml;CTMAB 用量为 $0.8\sim2$. 0ml;显色稳定时间为 $1\sim120min$. 显色温度在 $10\sim60$ C范围内均快而稳定。

综合考虑后作者选择 pH 为 5.5,5-BSAF 用量为 1.0ml,CTMAB 用量为 1.0ml,显色时间为 5min,显色温度为室温。

2.3 配合物组成[2]

分别用摩尔比率法(Abegg-Bodlander),直线法(Sanchez)和斜率比法等三种方法分别

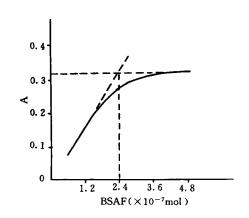
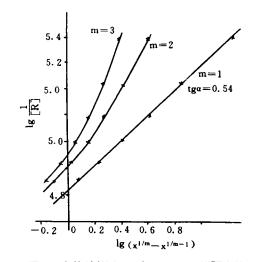
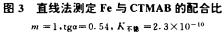


图 1 吸收曲线

图 2 Fe 与 BSAF 的摩尔比率 加入 Fe 8.9×10⁻⁸mol

- 1 Fe³⁺络合物的吸收 2 Ti⁴⁺络合物的吸收
- 3 Cu2+络合物的吸收 4 Mo4+络合物的吸收


 $[Fe^{3+}] = 5\mu g/25ml$ pH = 5.5


测得配合物为单核配合物,配合比为 Fe(Ⅱ): 5-BSAF: CTMAB 为 1:3:2; 三元配合物中 Fe(Ⅱ)-5-BSAF 的配合稳定常数为 4.5×10¹², Fe(Ⅱ)-CTMAB 的配合稳定常数为 4.3×10⁹. 见图 3,4.

2.4 镀液主要成分及其他离子的影响

在实验条件下测定了镀镍液,酸性镀锌液各成分的干扰情况。在保证测定误差不大于 5%的情况下,原镀液中各成分的最大允许量如下:(g/L 镀液) $Ni^{2+}(1000)$, $SO_{+}^{2-}(1000)$,氨基磺酸(1600), $Cl^{-}(200)$,十二烷基硫酸钠(100), $Zn^{2+}(100)$,氨三乙酸(350),聚乙二醇(300),硫脲(700), $NH_{+}Cl(2500)$,硼酸(10), $Fe^{2+}(100)$,糖精(20),BE 光亮剂(10ml/L).

由上可知,除硼酸外其余各成分存在浓度远小于干扰浓度,对测定没有影响。硼酸对显色反应有增敏作用,使吸光度有所增大。但在实际工作中每个镀槽中硼酸含量几乎是一常数,其增敏作用也基本恒定,故不影响 Fe(■)的定量测定。

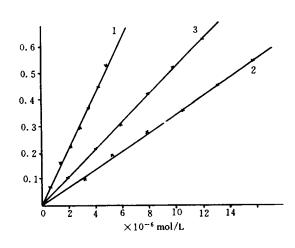


图 4 斜率比法测定 Fe-BSAF, Fe-CTMAB 配合比

- 1 改变 Fe(1)的量,tga₁=105
- 2 改变 BSAF 的量、tga2=3.4×104
- 3 改变 CTMAB 的量,tgα3=5.2×104

其他共存离子的影响如下:µg/ml 稀释液

Co(1500), Ca²⁺, Mg²⁺(400), Cd²⁺(20), Mo(Ⅵ), Al³⁺, Ti(Ⅳ)(5); C₂O₄²⁻(1000), SCN⁻(8); EDTA, F⁻, ClO₄⁻, PO₄³ 均有干扰。

2.5 工作曲线与回收率

在 1.2 所述的体系中加入系列铁标准液,以试剂为参比,测定吸光度,绘制工作曲线。得其回归方程为 y=0.7536x-0.0030,线性相关系数为 0.9997,线性范围为 $0\sim7\mu g$.

回收率试验如下进行。在若干份镀液样品中分别加入不同量 Fe³⁺,然后各自稀释 100 倍。吸取稀释液 1.00ml 作为试液,按 1.2 测定吸光度。结果如表 1.

试液含铁 (μg)		平均值	标准偏差	加入标准铁 (μg)	实测值 (μg)		回收率 (%)	
1.50 1.58	1. 49 1. 55			2. 00	3. 47 3. 55	3. 45 3. 50	98. 3 101	97. 7 99. 1
1. 60	1. 48	1.53	0.043	3. 00	4.60 4.65	4.52 4.57	102 103	99. 8 101
1.55	1. 52			4.00	5. 60 5. 70	5. 55 5. 62	101 103	100 102

表 1 加入回收率试验

由表1可知,本方法回收率为97.6%~103%. 镀液样品8次重复测定值标准偏差0.043,精密度良好。

将镀液稀释 100 倍是因为本方法灵敏度特别高。一般当镀液中含 Fe^{3+} 超过 $50\mu g/ml$ 时有可能对镀层产生不良影响,而当 Fe^{3+} 超过 $200\mu g/ml$ 将明显影响镀层质量^[3]。所以将镀液稀释 100 倍,每次测定吸取稀释液 1.00ml,其含 Fe^{3+} 量正好在本方法工作曲线的线性范围内。由于稀释倍数较大,有利于提高抗干扰能力。

参考文献

- 1 徐红娣,李光萃. 常用电镀溶液的分析:第三版. 北京:机械工业部出版社,1993
- 2 陈国珍,黄贤智. 紫外一可见光分光光度法:上册. 原子能出版社,1983
- 3 曾华梁,吴仲达等。电镀工艺手册。机械工业出版社,1989
- 4 陈烨璞,蔡汝秀等. 分析化学,1993,21(3):319

Spectrophotometric Determination of Frace-amount of Iron in Nickel Plating Solution

Chen Yepu Lu Qianqou Zhou Jun Reng Chunglan (Dept. of Chem. Eng.)

Abstract Aspectrophotometric method for determination of trace-amount of iron in nickel plating solution was studied. 2, 6, 7-trihydroxy-9-(5-bromosalicyl)-fluorone (5-BSAF) was used as chromogenic reagent. Fe(\blacksquare), 5-BSAF and CTMAB formed a stable ternary complex in a buffer of pH 5. $0\sim6$. 0. The optimum wave length for determination was 605nm, with the molar absorptive coefficient of 1. 4×10^5 L. mol⁻¹. cm⁻¹. The complex was stable within 2h linear range of this method was $0\sim7\mu g/25ml$, with coefficient of linear relation of 0. 9997. Recorery rate was 97. $7\sim103\%$. High concentration of ingredients in kinds of electroplating solutions showed no interference with the determination.

Subject-words Ternary complexes; Iron; Nickel; Spectrophotometry / 2,6,7-trihydrox-y-9-(5-bromosalicyl) fluorone (5-BSAF)