新型光催化反应器降解典型有机污染物2,4-二硝基苯酚

华兆哲 陈 坚 李丽洁 伦世仪 (无锡轻工大学生物工程学院, 无锡 214036)

白石文秀

(九州工业大学生物化学系统工程系,日本饭冢市川津680-4,820)

摘要 利用 TiO_2 在 H_2O_2 中的溶解性,在玻璃表面形成 TiO_2 薄膜,制作了新型环状光催化型反应器。以 2,4—二硝基苯酚为典型有机化合物,进行了降解的条件研究,并测试了反应器性能。分别考察了催化剂涂层载体、光源、搅拌以及流速对2,4—二硝基苯酚光降解的效率。结果表明: 石英玻璃为最理想的光催化剂载体;水银灯对2,4—二硝基苯酚的降解速度最快,是理想的光源;搅拌能够提高反应器效率;采用适宜的流速(45 ml/min)可使反应器效率达到理想值。在反应动力学研究中, 2,4—二硝基苯酚的最大降解速率为 $Kd_{max}=0.36$ mg/(L^{\bullet} min),最终的降解率达到99.5%。

关键词 光催化反应器;光催化降解; 2, 4-二硝基苯酚; 二氧化钛; 反应动力学 分类号 TO 052. 5/ X703

0 前 言

光催化法是一种利用光能降解难分解有机物的新型水处理技术。光催化反应是在光催化剂的作用下进行的反应,光催化剂多为硫族半导体材料,其中二氧化钛由于性质稳定、难溶、无毒、成本低而被广泛选用 $^{[1]}$ 。二氧化钛的带隙能为 $3.2~{\rm eV}$,用紫外光(λ < $380~{\rm nm}$) 辐射水溶液会产生电子—空穴对(${\rm e}^{-}$ 和 ${\rm h}^{+}$ 分离则可将所吸收光能转化为化学能,其具有的氧化能力足以将大多数有机物降解为 ${\rm CO}_2$ 和无机酸 $^{[2]}$ 。目前国内外研究的光催化反应器多为小型悬浮式,其缺陷不仅在于催化剂分离回收装置复杂,还存在催化剂粉末在水中的分散性随时间越来越差的问题。由于固定膜反应器在避免了上述问题的同时,也简化了搅拌传质过程,因此其实际应用性大为提高 $^{[3]}$ 。

2, 4-二硝基苯酚(2, 4-DNP) 为白色结晶, 略带黄色, 存在于染料、苦味酸、啊米多、浸渍介质、农药生产废水中^[4]。2, 4-DNP 能引起脂肪酸代谢, 极易从皮肤进入体内, 可导致体温上升、大量出汗、衰弱甚至死亡, 也能引起皮炎、白内障等疾病, 是环境中的典型有机污染物

之一。此外,它对下水净化设施有损害作用,质量浓度5 mg/L 时仅2.5 h 就使污泥失去活性^[5],对生物滤池影响的极限质量浓度为20 mg/L [6]。

作者在前一阶段研究的基础上 $^{[7]}$,利用 $_{\rm TiO_2}$ 在 $_{\rm H_2O_2}$ 中的溶解性,在玻璃表面形成 $_{\rm TiO_2}$ 透明薄膜,制作了新型光催化型反应器,并从光源、催化剂载体玻璃、搅拌以及反应液流速等反应条件对新型光催化反应器降解2,4- $_{\rm DNP}$ 的能力进行了

1 材料与方法

1. 1 2,4-DNP 测试方法 在357 nm 下,以721分光光度计测定^[8]。

- 1. 2 反应器 TiO₂涂层方法
 采用溶胶→凝胶法将 TiO₂涂于载体玻璃表面^[9]。
- 1.3 新型光催化反应器构造 见图1.

实验验证,得到了较好的结果。

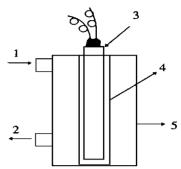


图1 光催化反应器示意图

- 1 反应物入口; 2 反应物出口; 3 光源;
- 4 内表面涂有 TiO2薄膜的玻璃套管;
- 5 反应器外套管

2 结果与讨论

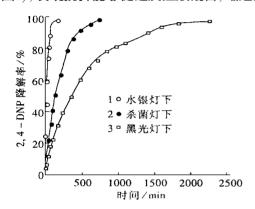
2.1 载体的选择

在光催化反应器中,催化剂涂层载体对透过光波长的选择性,直接影响到催化剂的反应效率,因此必须选择合适的载体。

本文中所比较的载体为碳酸钠玻璃与石英玻璃, 其中碳酸钠玻璃主要成分为 $Na^2O-CaO-SiO_2$, 其透过波长为330~2 500 nm, 即紫外的长波、可见及近红外光, 能透过黑光灯波长300~380 nm 的部分和白色荧光灯490~580 nm 的部分。而石英玻璃即 SiO_2 , 其透过性是玻璃中最好的, 透过波长为200~3 500 nm, 即紫外、可见和近红外光, 能透过黑光灯、灭菌灯与白色荧光灯的所有光。

实验中发现, 选用碳酸钠玻璃为载体时, 杀菌灯放射出的紫外线波长($250 \sim 260 \text{ nm}$) 不易透过, 2, 4-DNP 几乎不发生降解; 黑光灯放射出的紫外线波长($300 \sim 400 \text{ nm}$) 在碳酸钠玻璃的透过范围内, 2, 4-DNP 能被光解。当选用石英玻璃为载体时, 杀菌灯、黑光灯、白色荧光灯对有机物的降解率均有不同程度的提高。实验结果表明, 采用石英玻璃作为催化剂载体可获得较为满意的降解效果。

2. 2 光源的选择


有机化合物中不同的化学键, 其断裂键能也不同, 根据质能方程 $\epsilon \lambda = hc$, 可得出常见化学键的断裂顺序:

- C = O (168.4 nm) < C = C (192.3 nm) < O H (256.3 nm) < C H (287.2 nm) < N H (306.4 nm) < C O (347.5 nm) < C C (360.1 nm) < C Cl (364.5 nm) < C N (406.8 nm) < C S (412.4 nm) < C Br (431.9 nm)由此可以推测不同化学键断裂的适宜波长。
- 2, 4-DNP 中的主要化学键有 C—C, O—H, C—N 等, 从理论上推测, 必须用192. 3 nm 以下的光源, 才能将其彻底降解。Journal Electronic Publishing House. All rights reserved. http://

作者对此进行了实验验证,比较了3种光源对2,4-DNP 的降解效率,光源为水银灯(185 nm)、杀菌灯(250~260 nm)和黑光灯(300~400 nm),反应器以石英玻璃为催化剂涂层载体,流速为16 mL/min,反应液体积为200 ml,结果见图2. 不同光源下,2,4-DNP 的降解速率顺序为·水银灯>杀菌灯>黑光灯,该结果较好地验证了上述理论推断。

2.3 搅拌对光催化反应器效率的影响

在以上实验的基础上,采用石英玻璃为催化剂涂层载体和水银灯为光源,在反应器流速 25 ml/min 和反应液体积200 ml 的条件下,考察了搅拌即传质效率对反应器效率的影响(见图3),发现搅拌能够促进反应液混合,缩短反应时间,提高反应速率。

100 90 80 路解率/ 70 60 50 4 - DNP 40 1 ° 搅拌 30 ● 无搅拌 20 60 10 20 30 40 50 70 80 时间/min

图2 不同光源下2,4-DNP 的降解率

2.4 流速对反应器效率的影响

反应液流速的大小是影响反应过程的一个重要因素,流速过大会由于2,4-DNP还未完成彻底降解就流出反应器,导致循环次数增加而使得反应时间延长;而流速过小则会对光源能量造成浪费,同样也会使得反应时间延长。因而选择合适的流速十分重要,特别是对于大型反交路处理废水,更需要考虑到节约能源与节省时间,这具个有一定的实际意义。作者采用以上实验得出的最佳条件,考察了反应液流速对反应器效率的影响,结果见图4,发现在中等流速即45 mL/min 时,反应器效率最高。

2.5 光催化反应器对2,4-DNP 降解的动力学研究

在上述研究的基础上,作者还研究了该光催化反应器在理想条件下(石英玻璃为载体、水银灯为光源、搅拌及流速为45 mL/min)对2,4-DNP的降解动力学过程,见图5.

由图5可见, 2, 4-DNP 的光催化降解非常迅速, 1 h 左右就基本降解完成, 这表明该新型光催化反应器能降解象 2, 4-DNP 这一类有机污染物。另外, 由图5可以计算得到该实验条件下 2, 4-DNP 的最大降解速率为 $Kd_{\text{max}} = 0$. 36 mg/(L^{\bullet} min), 最终的降解率达到99. 5%.

图3 搅拌对2,4-DNP 降解的影响

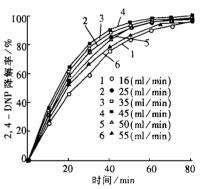


图4 流速对2, 4-DNP 降解率的影响

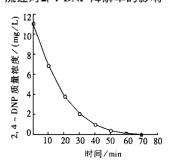


图5 催化反应器中2,4-DNP use. 随时间变化曲线 Ved.

http://

© 1994-2013 China Academic Journal Electronic Publishing House.

69

结 3 论

- 1) 实验结果证明,新型光催化反应器可以有效降解 DNP, 2, 4-DNP 的最大降解速率为 K d_{max} = 0.36 mg/(L•min), 最终的降解率达到99.5%.
- 2) 催化剂 TiO2在重复使用中活性基本没有变化, 重复测定所得 DNP 降解曲线几乎重 合, 说明该反应器活性非常稳定。
 - 3) 选用石英玻璃作为光催化剂载体最为理想,能透过几乎所有光源。
- 4) 选用同一载体, 试验杀菌灯、黑光灯和水银灯对2, 4-DNP 的降解效果, 结果表明不同 波长的光源对有机物的降解能力不同。水银灯对2.4-DNP 的降解最快,是理想的光源。
 - 5) 搅拌能够促进反应液的混合,缩短反应时间,提高反应器效率。
 - 6) 适宜的流速可使反应器效率达到理想值, 本实验中为45 mL/min.

考 文 献

- 吴海宝. 半导体-水体系光催化氧化有机物机理及应用. 环境污染与防治, 1996, 18·40~43
- 2 Hofstadler K. New reactor design for photocatalytic wastewater treatment with TiO2 immobilized on fused-silica glass fibers: photomineralization of 4-chlorophenol. Environ Sci Technol, 1994, 28: 670 ~674
- 3 李田, 严煦世. 实用型固定膜光催化氧化装置去除水中苯酚. 同济大学学报, 1995, 23: 393~397
- 4 格鲁什科 SM. 工业废水中有毒有机化合物手册, 北京·烃加工出版社, 1988, 140~141
- 5 白石文秀,富金原悟,Pergormances of the photocatalytic reactors composed of glass supports coated with a transparent TiO2 thin film and their application to CELSS. ELSS Journal, 1995, 9:19 ~ 25
- 6 Matsuo K, Takeshita T, Nakano K. Formation of thin films by the treatment of amotphous titania with H₂O₂. J Crystal Growth, 1990, 99:621

Study on Degradation of a Typical Contaminant 2, 4-DNP with a New Type Photocatalytic Reactor

Hua Zhaozhe Chen Jian Li Lijie (School of Biotechnology, Wuxi University of Light Industry, Wuxi 214036)

Fumihide Shiraishi

(Department of Biochemical Engineering and Science, Kyushu Institute of Technology, Iizuka 820)

In this paper, the photodegradation of the typical organic contaminant, 2, 4dinitrophenol (2, 4-DNP), was studied in a new type photocatalytic reactor. The conditions including catalyzer (TiO2) carrier, lamp-house and velocity of flow were tested, and the results showed that quartz glass, mercury-lamp and moderate velocity of flow (45 mL/ min) were optimum, respectively; and the mixture of circular influent could accelerate the reaction process. In the study of degradation kinetics of 2,4-DNP, the maximum velocity (Kd max = 0.36 mg/(L•min) and ratio (99.5%) of degradation were also obtained.

Key words photocatalytic reactor; photodegradation; 2, 4-dinitrophenol; TiO2; reaction kinetics

© 1994-2013 China Academic Journal Electronic Publishing House. All 责任编辑:案知乎http://