文章编号:1009-038X(2000)04-0376-05

真丝重磅织物绸重与组织的关系

郑家明

(无锡轻工大学纺织服装学院,江苏无锡 214064)

摘 要:首先从结构相角度探讨组织与绸重的理论关系,得出组织是影响绸重的重要因素这一结论.进而利用正交试验设计法安排不同指标的真丝重磅织物进行织造,并以绸重为指标,运用多元线性回归法将其与规格参数进行回归分析,分别建立单层、重纬、双层组织的真丝重磅织物绸重与组织的定量关系.

关键词: 真丝重磅织物 绸重 组织

中图分类号:TS105.11 文献标识码:A

The Relationship between Weight and Weave of Heavy Silk Fabrics

ZHENG Jia-ming

(School of Textile & Garment Design, Wuxi University of Light Industry, Wuxi 214064)

Abstract: In the paper, the theoretical relationship between the weave and weight from the point of structural phrase was discussed. It is concluded that weave was the important factor affecting the weave. Moreover, The orthogonal test to weave the different heavy silk fabrics was used, and the plural linear regress was used to analyse weight and various specification parameters. It was founded that the relationship between weight and weave of the heavy silk fabrics with different weaves for single weave, double wefted weare and double weave.

Key words: heavy silk fabric; weight; weave

传统真丝绸产品多为超薄型或薄型 "产品的姆米数一般小于 20 ,这使真丝绸的使用范围受到了一定的限制. 近几年 ,国内开始研究重厚型真丝产品以扩展真丝原料的应用范围. 真丝产品绸重的增加一般采用加粗丝线的方法实现 ,而过粗的丝线势必影响真丝织物的外观效果 ,同时 ,过大的绸重有可能导致织物不可织. 既定绸重下 ,如何选择合适的组织成为设计真丝重磅织物的关键. 通过对织物绸重与组织关系的理论研究可知 ,同样的原料及纤度下 ,不同组织所能达到的绸重不同. 并且重纬和双

层组织可达到的绸重大于单层,即组织的变化同样可以改变真丝产品的绸重.本研究以织物绸重为指标,以织物组织系数为其影响因素之一,通过多元线性回归法建立单层、重纬、双层组织的真丝重磅织物绸重与组织间的定量关系,为设计既定绸重下的真丝重磅织物选择可实现的组织提供了依据.

1 绸重与组织关系的理论研究

不同组织所能达到的最大绸重不同的根本原 因在于经纬丝的空间屈曲关系,即几何结构相不 同 织成织物的经纬丝屈曲长度及密度不同而使绸重不同. 本部分即从结构相角度探讨组织与绸重的定量关系

1.1 织物绸重的计算

对某一织物来说,要达到规定的绸重,其经纬纤度、密度必须满足一定的数学关系式.

设M 为成品绸重(g/m^2), δ 为织物炼减率(%), $P_f(P_w)$ 为织物经(纬)密(根/cm), $D_f(D_w)$ 为经(纬)丝纤度(D), $A_1(A_2)$ 为经(纬)丝总缩率(%)则

$$M = \text{[($P_jD_j/90\text{)}$($1+A_1$)+($P_wD_w/90\text{)}$($1+A_2$)]} + A_2 \text{][$1-\delta/100$)}.$$

将每平方米克重换算成姆米数 则

$$E_j=P_ja~\sqrt{D_j}$$
 , $E_w=P_wa~\sqrt{D_w}$. 式中 a 为直径换算系数 桑蚕丝取为 0.01256),代入上式 则

$$M = \frac{[E_{j}D_{j}(1 + A_{1}) y_{a} + E_{w}D_{w}(1 + A_{2}) y_{a}] [1 - \delta/100]}{387.504}$$
(1)

由式(1)可知,绸重与紧度、经纬丝纤度和缩率有定量关系,在缩率、经纬丝纤度已知的条件下,紧度决定了绸重.

1.2 经纬同原料、不同纤度和紧密结构织物的紧度值

根据紧密结构织物紧度定义[1]及不同组织不同结构相下的紧度值可知:当织物处于第五结构相(或 $d_j \neq d_w$ 时的第0结构相)时,经、纬达到双向紧密;当织物处于其它结构相时,均为单向紧密织物.由于研究的对象为真丝重磅织物,为了简化问题和便于比较,只考虑双向紧密时织物的理论最大紧度。即第0结构相的理论最大紧度.

对于经纬丝原料相同而纤度不同的织物 ,紧密 结构各结构相的紧度(E_i , E_w)的计算式如下:

$$E_{j}' = \frac{R_{j}}{t_{w} \sqrt{(1 - \eta j'^{2})(1 + \sqrt{\beta})^{2} + (R_{j} - t_{w})}}$$

$$E_{w}' = \frac{R_{w}}{t_{j} \sqrt{(1 - \eta w'^{2})(1 + \frac{1}{\sqrt{\beta}})^{2} + (R_{w} - t_{j})}}$$
(2)

其中 : $R_i(R_w)$ 为组织循环经(纬)丝根数 ; $t_j(t_w)$ 为组织循环中,每根经(纬)丝与纬(经)丝的交叉次数 ; η_j ' (η_w ')为 经(纬)丝屈曲波高阶差系数,与结构相序 \emptyset 有关,而 $\emptyset=8h_j/(h_j+h_w)+1$,故与经(纬)丝屈曲波等有关; β 为经纬丝纤度平衡系数($\beta=D_w/D_j$, D_j 为经丝纸环度 M_w 为纬丝纤度).

根据式(2)及相应的阶差系数值,分别计算 R=2 ~低 即平纹、三枚、四枚、五枚,六枚组织), $\beta=1\sim4$,第 0 结构相的理论最大紧度值,见表 1.

表 1 $R = 2 \sim 6 \beta = 1 \sim 4$ 时紧密结构织物的紧度值

Tab.1 Tightness value of the closeness fabric when

$R = 2 \sim 6$, $p = 1 \sim 4$							
	0			R			
	β	2	3	4	5	6	
1	$E_{\mathrm{j}}{}^{'}$	57.7	67.2	73.2	77.4	80.4	
1	$E_{\mathrm{w}}{}'$	57.7	67.2	73.2	77.4	80.4	
2	$E_{\mathrm{j}}{}^{'}$	51.3	61.1	67.7	72.4	75.9	
2	$E_{\mathrm{w}}{}'$	64.3	73.0	78.3	81.8	84.4	
3	$E_{\rm j}{}^{'}$	47.5	57.6	64.4	69.3	73.1	
3	$E_{\mathrm{w}}{}'$	68.0	76.1	81.0	84.2	86.2	
4	$E_{\mathrm{j}}{}^{'}$	44.5	54.6	61.6	66.7	70.6	
4	$E_{\mathrm{w}}{}'$	70.8	78.5	82.9	85.9	87.9	

由表 1 可知 :在同样的原料和经纬纤度比下 ,不同组织所能达到的最大紧度不同 ,导致不同组织所能达到的最大绸重不同.

1.3 $R = 2 \sim 6$, $\beta = 1 \sim 4$ 时紧密结构织物的最大绸

假定 $A_1 = A_2 = 10\%$ 将表 1 数值代入式 1 分别 计算 D_j 为 2/20/22 D、3/20/22 D、4/20/22 D 时的桑 蚕丝在 $\beta = 1 \sim 4$ 的情况下 不同组织 $R = 2 \sim 6$ 第 0 结构相的最大绸重 结果见表 2.

分析表 2 数据,可得如下结论:

- 1)当纤度、缩率一定时,不同组织对应于不同的 绸重 且随着组织循环数的增加,其所能达到的最大 绸重也增加 因此组织是影响绸重的因素之一
- 2)已知织物的绸重,当经纬丝纤度和经纬向缩率一定时,理论上可以找出相应的组织.
- 3)单层织物的绸重基本在 40 姆米以内. 当绸重达到 30 姆米以上时 其经纬丝纤度较粗 势必影响真丝织物的外观效应及内在品质 如手感、弹性、光泽等 且不利于织造. 由此可知 要设计绸重在 30 姆米以上的织物 采用单层组织已不能满足要求.

2 织物绸重与组织间实验关系的建立

通过织物绸重与组织的理论研究 ,建立了组织与绸重的理论关系式 ,在已知 R_j , R_w , t_j , t_w , η_j , η_w 的情况下 ,即可通过 E_j , E_w 求组织与绸重的关系 ,但欲知 η_j , η_w 值 ,须首先确定经纬丝的屈曲波高 h_j 和 h_m ,即确定织物的几何结构相 .目前多通过做织

物切片确定织物的几何结构相,实验准确性差且难度大,因而该理论关系式在实际生产中应用非常不便,本研究用正交试验设计法,利用正交表安排织

造不同规格的真丝重磅织物,以织物绸重为指标,与规格参数进行回归分析,建立回归方程.

表 2 $R = 2 \sim 6$ $\beta = 1 \sim 4$ 时紧密结构织物的最大绸重

Tab. 2 The maximum weight of the closeness fabric when $R = 2 \sim 6$ $\beta = 1 \sim 4$

姆米

2/20/22 D			3/20/22 D			4/20/22 D						
R	Rβ			β			β					
	1	2	3	4	1	2	3	4	1	2	3	4
2	13.0	16.0	18.5	20.5	15.5	19.5	22.5	25.5	18.0	22.5	26.0	29.5
3	15.0	18.5	21.0	23.5	18.5	22.5	26.0	29.0	21.0	26.0	30.0	33.5
4	16.5	20.0	23.0	25.5	20.0	24.5	28.0	31.0	23.0	28.0	32.0	36.0
5	17.0	21.0	24.0	26.5	21.0	25.5	29.5	32.5	24.5	29.5	34.0	37.5
6	18.0	21.5	25.0	27.5	22.0	26.5	30.5	33.5	25.5	30.5	35.0	39.0

2.1 试验方案的确定

分析影响织物绸重的因素,将经纬丝纤度、经纬密度、织物组织及纬丝捻度定为正交试验所需的6个因素.结合规格及经纬丝纤度平衡系数的常用值,预先确定经纬丝纤度,并采用两台织机进行织造具体方案如下:

正交试验 1 经丝 3/20/22 D 纬丝 6/20/22 D, 重纬组织 :正交试验 2 经丝 3/20/22 D, 纬丝 6/20/22 D, 双层组织 :正交试验 3 :经丝 4/20/22 D, 纬丝 8/20/22 D 重纬组织 :正交试验 4 纬丝 8/20/22 D, 经丝 4/20/22 D, 双层组织 :正交试验 5 :经丝 8/20/22 D, 纬丝 12/20/22 D, 单层组织 :正交试验 6 经丝 8/20/22 D, 纬丝 8/20/22 D, 重纬组织 :

因素数最终定为 4 个 ,即经密、纬密、组织及纬 丝捻度 ,各因素均定为两水平 ,即四因素二水平试 验. 用捻系数作为捻度的特征量 ,以组织系数作为 区分不同组织的特征量 ,其计算如下:

组织系数
$$\varphi = R_j R_w / t'$$

 $t' = (\sum t_j + \sum t_w) / 2$

式中 $_{i}R_{j}(R_{w})$ 为完全组织的经(纬)丝循环数 $_{i}t_{j}$ ($_{t_{w}}$)为一个组织循环中 ,每根经(纬)丝与纬(经)丝 的交叉次数.

一般而言 φ 大则组织松 φ 小则组织紧. 它可以描述经、纬丝组织循环次数不等的组织的松紧程度 因素水平表见表 3.

表 3 6 个正交试验的因素 - 水平表

Tab.3 Factors and levels of the six orthogonal experiments

因素 -	正交i	式验 1	正交记	式验 2	正交i	式验 3	正交	试验 4	正交记	式验 5	正交证	式验 6
	1	2	1	2	1	2	1	2	1	2	1	2
P _j /(根/cm)	140	84	140	84	78	105	105	126	58.5	70	58.5	70
Pw /(根/ cm)	40	45	40	45	35	45	35	45	18	24	24	35
arphi	1.34	3.0	1.7	4.0	1.34	3.2	1.6	2.67	4.0	2.0	1.34	2.6
α_{T}	0	291	0	291	0	337	0	337	0	413	0	337

注:其中 P_i 为经密 P_w 为纬密 根 P_m 为组织系数 P_m 为捻系数 P_m 为捻度 P_m 为终度 P_m 为丝线旦数 P_m

2.2 织物试样与测试

2.2.1 织物试样 在两台 K251 型有梭织机上进行织造,1 号织机织经丝3/20/22 D桑蚕丝,12 片综顺穿.2 号织机织经丝4/20/22 D桑蚕丝及8/20/22 D桑蚕丝,8 片综顺穿,每两块试样换一次纬密牙,每一块试样换一块纹板,按试样顺序换筘,共织得织物48块.

2.2.2 测试 测试织物成品的经纬密、绸重. 经纬密用纬密镜测定服每个试样测 5 次 取平均值. 绸重

通过分析天平测定.

3 数据处理与结果分析

3.1 数据处理

由于采用了正交试验设计方案,对试验数据的处理可采用多元线性回归的方法进行.本部分旨在建立成品绸重(姆米数)与参与试验的各因素间的回归方程,以达到预知不同组织可选绸重的目的.考虑到回归公式的适用性,将经丝纤度与经密结合

为经向紧度参与回归,将纬丝纤度与纬密结合为纬向紧度参与回归.各试样成品的绸重及经纬向紧度、组织系数、捻系数见表 4.

表 4 各试样指标和因素的测试值

Tab.4 Test values of the samples

试样号 M(姆米) E_i /% E_{∞} /%

试样号	M(人 姆米)	E_j /%	E_w /%	φ	α_{T}
1	42.5	161.50	64.85	1.34	292
2	35.5	149.54	62.03	3.0	0
3	39.0	149.54	69.08	1.34	0
4	43.5	159.51	73.31	3.0	292
5	27.0	81.75	62.03	1.34	0
6	33.0	101.69	67.67	3.0	292
7	37.5	86.73	73.31	1.34	292
8	28.5	103.68	71.9	3.0	0
试样号	M/(姆米)	E_j /%	E _w /%	φ	α_{T}
1	32.5	91.72	64.85	1.7	292
2	25.0	83.74	62.03	4.0	0
3	29.0	85.74	76.13	1.7	0
4	41.0	93.71	78.95	4.0	292
5	33.5	139.57	59.21	1.7	0
6	40.5	169.48	59.21	4.0	292
7	51.0	143.56	90.23	1.7	292
8	42.5	167.48	87.41	4.0	0
试样号	M/(姆米)	E_j /%	E_w /%	φ	α_{T}
1	43.5	101.30	68.37	1.34	337
2	31.5	96.70	63.49	3.2	0
3	34.0	105.91	87.91	1.34	0
4	43.5	110.51	66.75	3.2	337
5	35.0	128.93	56.98	1.34	0
6	51.0	156.56	66.75	3.2	337
7	50.0	156.56	81.40	1.34	337
8	33.0	124.32	58.61	3.2	0
试样号	M/(姆米)	E_j /%	E_w /%	φ	α_{T}
1	51.0	156.56	71.63	1.6	337
			, 1, 00	1.0	337
2	37.0	131.23			0
3	37.0 43.5	131.23 128.93	66.75	2.67	
			66.75 68.37	2.67	0
3	43.5 51.0	128.93 128.93	66.75 68.37	2.67 1.6 2.67	0
3 4	43.5 51.0	128.93 128.93	66.75 68.37 78.14	2.67 1.6 2.67	0 0 337
3 4 5	43.5 51.0 44.5	128.93 128.93 147.35	66.75 68.37 78.14 61.86	2.67 1.6 2.67 1.6	0 0 337 0
3 4 5 6	43.5 51.0 44.5 57.5	128.93 128.93 147.35 174.97	66.75 68.37 78.14 61.86 74.89 91.17 78.14	2.67 1.6 2.67 1.6 2.67	0 0 337 0 337
3 4 5 6 7	43.5 51.0 44.5 57.5 64.0	128.93 128.93 147.35 174.97 174.97 147.35	66.75 68.37 78.14 61.86 74.89 91.17	2.67 1.6 2.67 1.6 2.67 1.6	0 0 337 0 337 337
3 4 5 6 7 8	43.5 51.0 44.5 57.5 64.0 45.5	128.93 128.93 147.35 174.97 174.97 147.35	66.75 68.37 78.14 61.86 74.89 91.17 78.14	2.67 1.6 2.67 1.6 2.67 1.6 2.67	0 0 337 0 337 337 0
3 4 5 6 7 8 试样号	43.5 51.0 44.5 57.5 64.0 45.5 <i>M</i> /(姆米)	128.93 128.93 147.35 174.97 174.97 147.35 E _j /%	66.75 68.37 78.14 61.86 74.89 91.17 78.14 E_w /%	2.67 1.6 2.67 1.6 2.67 1.6 2.67 φ	$0 \\ 0 \\ 337 \\ 0 \\ 337 \\ 337 \\ 0 \\ \alpha_{\rm T}$
3 4 5 6 7 8 试样号	43.5 51.0 44.5 57.5 64.0 45.5 <i>M</i> /(姆米)	128.93 128.93 147.35 174.97 174.97 147.35 $E_j / \%$ 133.49	66.75 68.37 78.14 61.86 74.89 91.17 78.14 E_w /% 39.88	2.67 1.6 2.67 1.6 2.67 1.6 2.67 4.0	$0 \\ 0 \\ 337 \\ 0 \\ 337 \\ 337 \\ 0 \\ \alpha_{\rm T} \\ 413$
3 4 5 6 7 8 试样号 1 2	43.5 51.0 44.5 57.5 64.0 45.5 M/(姆米) 46.5 36.0	128.93 128.93 147.35 174.97 174.97 147.35 $E_j/\%$ 133.49 107.45	66.75 68.37 78.14 61.86 74.89 91.17 78.14 $E_w/\%$ 39.88 39.88	2.67 1.6 2.67 1.6 2.67 1.6 2.67 φ 4.0 2.0	$\begin{array}{c} 0 \\ 0 \\ 337 \\ 0 \\ 337 \\ 337 \\ 0 \\ \hline \alpha_{\rm T} \\ 413 \\ 0 \\ \end{array}$
3 4 5 6 7 8 试样号 1 2 3	43.5 51.0 44.5 57.5 64.0 45.5 <i>M</i> /(姆米) 46.5 36.0 39.5	128.93 128.93 147.35 174.97 174.97 147.35 $E_j/\%$ 133.49 107.45 104.19	66.75 68.37 78.14 61.86 74.89 91.17 78.14 E_w /% 39.88 39.88 53.83	2.67 1.6 2.67 1.6 2.67 1.6 2.67 φ 4.0 2.0 4.0	$\begin{array}{c} 0 \\ 0 \\ 337 \\ 0 \\ 337 \\ 337 \\ 0 \\ \hline \alpha_{\rm T} \\ 413 \\ 0 \\ 0 \\ \end{array}$
3 4 5 6 7 8 试样号 1 2 3 4	43.5 51.0 44.5 57.5 64.0 45.5 M/(姆米) 46.5 36.0 39.5 47.0	128.93 128.93 147.35 174.97 174.97 147.35 $E_j / \%$ 133.49 107.45 104.19 107.45	66.75 68.37 78.14 61.86 74.89 91.17 78.14 E_w /% 39.88 39.88 53.83 53.83	2.67 1.6 2.67 1.6 2.67 1.6 2.67 φ 4.0 2.0 4.0 2.0	$\begin{array}{c} 0 \\ 0 \\ 337 \\ 0 \\ 337 \\ 337 \\ 0 \\ \hline \alpha_{\rm T} \\ 413 \\ 0 \\ 0 \\ 413 \\ \end{array}$
3 4 5 6 7 8 试样号 1 2 3 4 5	43.5 51.0 44.5 57.5 64.0 45.5 M/(姆米) 46.5 36.0 39.5 47.0 41.5	128.93 128.93 147.35 174.97 174.97 147.35 <i>E_j</i> /% 133.49 107.45 104.19 107.45	66.75 68.37 78.14 61.86 74.89 91.17 78.14 E_w /% 39.88 39.88 53.83 53.83 45.86	2.67 1.6 2.67 1.6 2.67 1.6 2.67 4.0 2.0 4.0 2.0 4.0	$\begin{array}{c} 0 \\ 0 \\ 337 \\ 0 \\ 337 \\ 337 \\ 0 \\ \hline \alpha_T \\ 413 \\ 0 \\ 0 \\ 413 \\ 0 \\ \end{array}$
	3 4 5 6 7 8 试样号 1 2 3 4 5 6 7 8 ば样号 1 2 3 4 5 6 7 8 ば样号 1 2 3 4 5 6 7 8 8 4 5 6 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	3 39.0 4 43.5 5 27.0 6 33.0 7 37.5 8 28.5	3 39.0 149.54 4 43.5 159.51 5 27.0 81.75 6 33.0 101.69 7 37.5 86.73 8 28.5 103.68	3 39.0 149.54 69.08 4 43.5 159.51 73.31 5 27.0 81.75 62.03 6 33.0 101.69 67.67 7 37.5 86.73 73.31 8 28.5 103.68 71.9	3 39.0 149.54 69.08 1.34 4 43.5 159.51 73.31 3.0 5 27.0 81.75 62.03 1.34 6 33.0 101.69 67.67 3.0 7 37.5 86.73 73.31 1.34 8 28.5 103.68 71.9 3.0

续表

	试样号	M/(姆米)	E_j /%	E_w /%	φ	α_{T}
	1	48.0	117.21	45.58	1.34	337
_	2	34.0	99.31	42.33	2.6	0
正交试验	3	42.0	104.19	65.12	1.34	0
试	4	59.0	125.35	65.12	2.6	337
验 6	5	43.0	120.47	43.95	1.34	0
U	6	57.5	156.28	45.58	2.6	337
	7	61.0	131.86	68.37	1.34	337
	8	46.0	118.84	61.86	2.6	0

注 其中 M 为成品绸重 $E(E_w)$ 为成品经 纬)向紧度 φ 为组织系数 α_T 为捻系数.

3.2 成品绸重的回归分析

通过对成品绸重的方差分析,可知 4 个因素影响绸重的程度不同,但均为显著性因素,其对绸重的影响顺序依次为:经向紧度>纬向紧度>纬丝捻系数>组织系数,由此可建立以下数学模型:

 $M=b_0+b_1E_j+b_2E_w+b_3\varphi+b_4\alpha_T$ 式中:M 为成品绸重(姆米), E_j (E_w)为经纬向紧度(%), φ 为组织系数, α_T 为纬丝捻系数($\alpha_T=T$ \sqrt{D}).

由于所织织物包括单层、重纬和双层组织 3 种类型 以下将分别针对不同的组织类型建立相应的回归方程.

3.2.1 单层组织的回归分析 用最小二乘法对回归公式中的 $b_0 \sim b_4$ 系数进行估计 ,然后用 F 检验法分别检验回归方程及每个回归系数的显著性 ,回归结果见表 5.

表 5 单层组织的回归结果及分析

Tab. 5 Regress results and analysis of single weave

计算项	经向 紧度	纬向 紧度	组织 系数	纬丝捻 系数	b_0
回归 系数	0.4038	0.5449	2.0577	0.0071	-24.0639
$F_{\rm i}$	156.33***	84.99***	13.46**	31.71**	
F	95.12***				

注:***表示高度显著,**表示显著,下表同.

可见, $F > F_{0.01}(4,3) = 28.71$; $F_1(F_2) > F_{0.01}(1,3) = 34.12$; $F_3(F_4) > F_{0.05}(1,3) = 10.13$.

回归方程高度显著. 经向紧度、纬向紧度、纬丝捻系数、组织系数均为高度显著影响因素,其影响作用为经向紧度>纬向紧度>纬丝捻系数>组织系数.

3.2.2 重纬组织的回归分析 回归分析方法同 3.2.1 回归结果见表 6.

表 6 重纬组织的回归结果及分析

Tab. 6	Regress	results and	analysis of	double-we	fted weave
计算项	经向 紧度	纬向 紧度	组织 系数	纬丝捻 系数	b_0
回归 系数	0.2699	0.3516	0.2391	0.0201	-7.7264
•	8.26***	6.18**	3.34*	5.62**	

其中 $F > F_{0.01}(4,19) = 4.50$; $F_1 > F_{0.01}(1,19) = 8.18$; $F_2(F_3) > F_{0.05}(1,19) = 4.38$; $F_4 > F_{0.16}(1,19) = 2.99$. 可见,回归方程高度显著. 经向紧度、纬向紧度、纬丝捻系数、组织系数均为高度显著影响因素,其影响作用为经向紧度 > 纬向紧度 > 纬丝捻系数 > 组织系数

3.2.3 双层组织的回归分析 回归分析方法同 3.2.1 回归结果见表 7.

可见 $F>F_{0.01}(4,11)=5.67$; $F_1(F_2,F_3)>F_{0.01}(1,11)=9.65$; $F_4>F_{0.05}(1,11)=4.84$. 回归方程高度显著. 经向紧度、纬向紧度、纬丝捻系数、组织系数均为高度显著影响因素 ,其影响作用为经向紧度>纬向紧度>纬丝捻系数>组织系数.

通过以上回归分析可知:经向紧度、纬向紧度、组织系数和纬丝捻系数均为绸重的影响因素,且在其它3个因素一定的条件下,绸重随另一因素的增加而增加.仅就同一组织类型而言,组织系数增大,织物绸重随之增大,即组织越疏松,可达到的姆米数越大.

表 7 双层组织的回归结果及分析

Tab.7 Regress results and analysis of double weave

计算项	经向 紧度	纬向 紧度	组织 系数	纬丝捻 系数	b_0
回归 系数	0.3325	0.3450	0.6665	0.0233	-5.8839
$F_{\rm i}$	21.59***	19.97***	5.52**	10.22***	
F	20.67***				

3 结论

依据结构相理论,在实验基础上分别建立了单层、重纬、双层组织的绸重回归公式.对真丝重磅织物的设计,在已知绸重的前提下,依据回归公式可以找到合适的组织,对织物设计有一定的指导作用.

参考文献

[1]吴汉金,郑佩芳. 机织物结构与设计[M]. 上海:同济大学出版社,1986.

(责任编辑:李春丽)