文章编号:1009-038X(2001)01-0065-03

薄层色谱法分离葡萄籽中的低聚原花青素

吕丽爽 , 曹 栋

(无锡轻工大学食品学院,江苏无锡 214036)

摘 要:通过对不同溶剂展开体系的选取,确定低聚原花青素分离的薄层色谱展开体系为 \imath (甲苯): \imath (丙酮): \imath (乙酸)=3:3:1.从原花青素中分离制备得到儿茶素的单体、二聚体、三聚体,运用高效液相色谱对其进行了分析验证.

关键词:薄层色谱;低聚原花青素;葡萄籽

中图分类号:S 663.1 文献标识码:A

Isolation of Oligomeric Proanthocyanidins from Grape Seed by TLC

LU Li-shuang, CAO Dong

(School of Food Science and Technology , Wuxi University of Light Industry , Wuxi 214036 , China)

Abstract: The separation of Oligomeric Proantho cyanidins (OPC's) by TLC was studied. After the experiments of various ascending elusions, the chromatography was carried out using an ascending elution with toluene/acetic acid (3:3:1). HPLC was also employed to analyze the compose of each fraction obtained from TLC.

Key words: TLC; oligomeric proanthocyanidins; grape seed

低聚原花青素(Oligomeric Proanthocyanidins 简称 OPC 's)是自然界中广泛存在的聚多酚类混合物 ,主要由儿茶素的单体、二聚体、三聚体……十聚体组合而成 .有人将其归为生物类黄酮 1 ,也有人将其归为缩合鞣质 2 .其特点为高效、低毒、高生物利用率 ,半致死量为 $\mathrm{LD}_{50}=3~\mathrm{g/kg}^{3}$.据资料报导 ,OPC 's 拥有较强的抗氧化、清除自由基能力和对人体微循环特殊改善的双重功效 . 在体内 ,其抗氧化能力是 $\mathrm{V_E}$ 的 50 倍 , $\mathrm{V_C}$ 的 20 倍 .近 10 年来在北美保健食品业和化妆品业得到广泛应用 ,年销售额超过 1 亿美元 1 .

目前国外已鉴定出 23 种不同结构的物质 其中

以二聚体的抗氧化性最强⁵¹.而国内对 OPC 's 的分离研究尚未见报道.作者通过薄层色谱将 OPC 's 中聚合度不同的组分分离并运用 HPLC 方法分析其中成分.

1 材料和方法

1.1 实验材料

白羽葡萄籽(青岛产);硅胶 G、硅胶 G_{E254} (200目)所用试剂均为分析纯

- 1.2 实验方法
- 1.2.1 提取方法 将干葡萄籽筛分 用捣碎机磨

收稿日期 2000-03-16 ;修订日期 2000-11-07.

作者简介: 吕丽爽(1975 -),女,河北石家庄人,工学硕士.

万方数据

碎过筑(≤ 1 mm),用 60% 乙醇,以 1:7 的料液比,在 50 ℃条件下,提取 3 次.洗涤残渣,合并提取液及洗涤液,减压浓缩,加 NaCl 饱和,过滤,并用 3 倍体积的乙酸乙酯萃取 3 次,减压浓缩萃取液,用 3 倍体积的石油醚沉淀 2 次,最终得到低聚原花青素 61 .

1.2.2 OPC 's 定量分析 见参考文献 7].

1.2.3 薄层分析和制备

薄层 :硅胶 G + 0.5% 的羧甲基纤维素钠;展开体系 1:/(甲苯):/(丙酮):/(甲酸)=3:6:1;展开体系 2:/(甲苯):/(丙酮):/(乙酸)=3:3:1;展开体系 3:/(乙酸乙酯):/(丁酮):/(甲酸):/(水)=5:3:1:1;展开体系 4:/(甲苯):/(氯仿):/(丙酮)=40:25:35; 湿色剂:/0%香草醛的盐酸溶液⁸].

硅胶 G_{F254} 制取制备薄板($20~\text{cm} \times 20~\text{cm}$),以 v (甲苯): v(丙酮): v(乙酸)= 3:3:1 为展开剂 ,将分离开的 3 种组分(荧光检测),按色带刮下带有样品的硅胶 ,分别装柱 ,用无水甲醇洗脱 ,以三氯化铁-铁氰化钾检测至洗出液不变色为止 . 收集各组分 ,减压蒸馏 ,真空干燥 ,备用 .

1.2.4 高效液相色谱分离 分别将制备薄层色谱分离的3条谱带配制成甲醇溶液,过滤后以相同进样量用 HPLC 分离.

2 结果与讨论

2.1 提取试验结果

最终产品经测定 低聚原花青素纯度达 95%以上.

2.2 展开剂的选取

选择合适的展开剂是薄层色谱分离成功的关键.其选择的依据是吸附剂的活性、被分离样品的极性.在一个多元展开系统中,各溶剂起不同的作用 极性较大的溶剂可以使化合物在薄层上移动加快 极性较小的溶剂降低极性较大的溶剂的洗脱能力,使其 R_f 值降低,中等极性的溶剂使极性相关较大的溶剂混合均匀.在展开剂中加入少量的酸,可使某些极性物质的斑点集中,减少拖尾.根据上述原则,选择 4 种不同展开体系进行实验,各组分 R_f 值见表 1.

由表 1 可以看出 展开体系 3 中被分离物质全部跑到溶剂前缘 ,表明展开体系极性过大 ;展开体系 4 中被分离物质停留在原点无展开 ,表明展开体系极性过小.体系 1 和 2 均能将其分离 ,但体系 2 分离效果更好.

万方数据不同展开剂层析的 R_f 值

Tab.1 Rf of TLC

谱带-	展开体系				
	1	2	3	4	
I	0.9	0.75	层析后显示单	层析后仍为单个	
п	0.8	0.38	个斑点 ,并接近	斑点 ,并停留在	
П	0.8	0.38	溶剂前缘	原点	
	0.7	0.19	(无分离)	(无分离)	

2.3 薄层层析组分的定性实验

表 2 为显色的初步定性分析 ,3 种组分均为多酚类 ,带 II 、带 III 为缩合鞣质类 ^{2]}.

表 2 TLC 色带的鉴定

Tab.2 Identigy of TLC Colour Zone

显色方式	带I	带Ⅱ	带Ⅲ
日光	无	无	无
紫外灯 254 nm	暗斑	暗斑	暗斑
三氯化铁-铁氰化钾	蓝色	蓝色	蓝色
盐酸-香草醛	红色	红色	红色
新石灰水	无色	棕红	棕红
溴水	黄色	橙黄	橙黄
三氯化铁	墨绿色	绿色	绿色

2.4 HPLC 进一步分离薄层制备的 3 种组分

以相同浓度等量进样 得到的 HPLC 图谱 ,分别 为图 1~3.

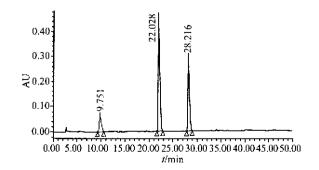


图 1 薄层谱带 I 的 HPLC 图谱 Fig.1 HPLC of the TLC colour Zone I

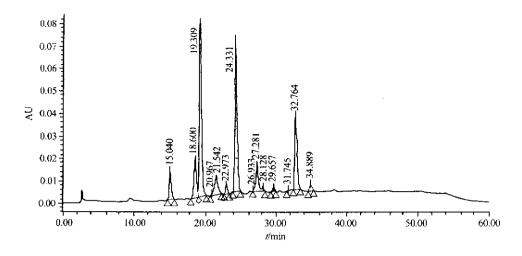


图 2 薄层谱带 II 的 HPLC 图谱

Fig. 2 HPLC of the TLC colour zone ${\rm I\hspace{-.1em}I}$

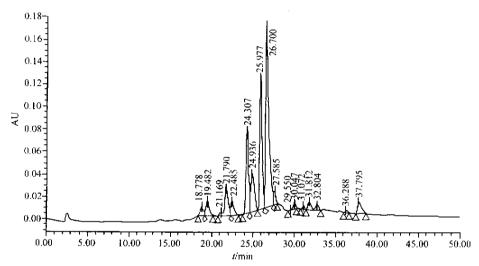


图 3 薄层谱带 III 的 HPLC 图谱

Fig.3 HPLC of the TLC colour zone I

3 结 论

作者运用薄层色谱通过一系列的实验,选取确定了溶剂展开体系为 ½(甲苯):½(丙酮):½(乙酸)=

3:3:1 将 OPC 's 以不同的聚合度加以分离 ,并通过 HPLC 色谱及质谱验证其分离效果良好. 由此可以 得到不同聚合度的产品 ,同时也为今后对 OPC 's 各组分的结构、功能的进一步研究打下了基础.

参考文献:

- [1] 王宪楷,天然药物化学 M1,北京:人民卫生出版社,1985.
- [2] 北京医学院编.中草药成份化学[M].北京:人民卫生出版社,1980.

(责任编辑 朱 明)