Vol. 21 No. 1 Jan. 2002

文章编号:1009-038X(2002)01-0062-05

百合多糖的化学结构及抗肿瘤活性

赵国华1, 李志孝2, 陈宗道1

(1. 西南农业大学 食品科学学院 重庆 400716; 2. 兰州大学 应用有机化学国家重点实验室 ,甘肃 兰州 730000)

摘 要:用水提取百合块茎粗多糖,经 Sevag 脱蛋白质,透析后经 DEAE-cellulose 及 Sephadex G-100 柱色谱纯化,得到百合纯多糖组分 LBPS-I. 经完全酸水解,PC,GC,IR,高碘酸氧化,Smith 降解,甲基化分析, 1 H 及 13 C-NMR 等研究百合多糖的化学结构,表明 LBPS-I 的相对分子质量为30 200,比旋光度 α β = +192.3(α 0.75, β 0.75, β 0.75, β 0.75, β 0.76 β 0.77 β 0.77 β 0.78 β 0.79 β 0.79

关键词:百合;多糖;结构;抗肿瘤

中图分类号:R 284.1; R 284.2

文献标识码:A

Chemical Structure and Antitumor Activity of Polysaccharide from *Lilium brownii*

ZHAO Guo-hua¹, LI Zhi-xiao², CHEN Zong-dao¹

(1. Food College, South-west Agricultural University, Chongqing 400716, China; 2. National Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China)

Abstract: The tube root of *Lilium brownii* was extracted with water , from the extract , the polysaccharide of LBPS-I was isolated and purified using Sevag deprotein , DEAE-cellulose and Sephadex G-100 column chromatography. Its structure was determined by PC , GC , IR , periodate oxidation , Smith degradation , methylation analysis ,1H-NMR and 13H-NMR analysis etc. LBPS-I was found contained a backbone composed of α -D-(1 ,4)-Glcp and α -D-(1 ,3)-Glcp (2:1), a short α -D-(1 ,6)-Glcp branch was attached to the main chain. LBPS-I had a molecular weight of 30 200 ,[α] $^{20}_D$ = +192.3(c 0.75 ,H₂O) and [η] = 14.06 × 10⁻³ mL/g. LBPS-I significantly inhibited the cancer cell line of melanoma B16 and Lewis lung cancer in mice in vivo.

Key words: Lilium brownii; polysaccharide; structure; antitumor

百合 拉丁名为 Lilium brownii F. E. Brown var. Colchesteri Wils, 百合科百合属植物. 已有的研究表明,百合炮制剂具有止咳、消炎、增强机体免疫功能的作用¹². 吴少华等³⁴曾对百合总多糖的分离、组成和免疫活性做过初步的研究,表明百合总多糖

具有良好的增强免疫调节的作用,但对其多糖组分的进一步分离纯化和化学结构的研究尚未见报道。 为促进对百合多糖的进一步开发和应用,本文对百合多糖主要组分 LBPS-I 的分离纯化、化学结构及抗肿瘤活性的研究作报道。

1 材料与方法

1.1 主要试剂和仪器

百合购自重庆市百货公司;DEAE-cellulose(DE-52)为 Whatman 产品;Sephadex G-100、Sepharose CL-4B及 Dextran 系列标准品为Pharmacia产品;三氟醋酸、标准单糖和糖醇为 Emerck 产品;硼氢化钠为Aldrich产品.

170 SX 型红外光谱仪; Shimadzu GC-9A 型气相色谱仪; OV-225 石英毛细管柱(0.29 mm × 25 m); Bruker AM-400 型超导核磁共振仪; HP5890/5988A型色质联用分析仪; Perkin 341 型旋光仪.

Lewis 肺癌细胞和 C57BL/6 小鼠由卫生部兰州 生物制品研究所提供.

1.2 实验方法

- 1.2.1 提取与组分纯化 百合块茎清洗破碎后用温水提取 3 次 4 层纱布过滤得提取液 ,经减压浓缩、乙醇沉淀 ,沉淀物加少量水溶解 Sevag 法脱蛋白质 8 次 ,自来水透析 2 d ,透析内液用乙醇沉淀 ,沉淀物连续用无水乙醚或丙酮洗涤干燥 ,得灰白色百合粗多糖.取适量粗多糖用水溶解后进行 DEAE-纤维素离子交换柱色谱 ,用水洗脱 ,硫酸-蒽酮法检测 ,收集主峰多糖 ,再经 Sephadex G-100 凝胶色谱纯化 ,硫酸-蒽酮法检测 ,收集主峰多糖 ,真空浓缩、乙醇沉淀后干燥得 LBSP-I 多糖.
- 1.2.2 纯度鉴定 采用凝胶色谱法.取 LBPS-I 10 mg 溶于最小体积的 0.1 moL/L NaCl 溶液中 ,小心将其完全加到 Sepharose CL-6B 柱(15 mm×900 mm) 顶 用 0.1 moL/L NaCl 洗脱 ,体积流量为 8 mL/h ,每管收集 1 mL ,用硫酸-蒽酮法检测多糖.

- 1.2.4 糖组成测定 LBPS-I 10 mg 加 2 moL/L 三 氟醋酸 TFA 2 mL 封管后在 120 $^{\circ}$ 下水解 2 h ,冷却后减压蒸干除去 TFA . 用纸色谱法(PC)检测水解产物 ,展开剂为乙酸乙酯-吡啶-醋酸-水(质量比 5:5:1:3) ,用苯胺-邻苯二甲酸试剂显色 . 剩余水解物减压干燥过夜后加入 10 mg 盐酸羟胺及 1 mL 无水吡啶 ,温热溶解后在 90 $^{\circ}$ 反应 30 min ,冷至室温 ,加入 1 mL 无水醋酸酐 在 90 $^{\circ}$ 下继续反应 30 min ,冷至室温 ,加入 1 mL 无水醋酸酐 在 90 $^{\circ}$ 下继续反应 30 min ,冷至室温 ,加入 1 mL H₂O 摇匀 ,再用氯仿萃取乙酰化产物 3 次 ,每次 1 mL ,合并氯仿层 . 同法制备各种标准单糖的糖腈乙酸酯衍生物 ,分别进行气相色谱(GC)分析 . 色谱条件 :OV-225 玻璃毛细管柱(0.29 mm × 25 m) ,柱温 235 $^{\circ}$, 载气为 N₂ ,体积流量 46 mL/min . 详见文献 5].
- 1.2.5 甲基化反应 取经 P2O5 干燥的 LBPS-I 5 mg ,溶于 2 mL 无水二甲亚砜中 ,在氩气保护下注入 1.5 mL 甲基亚磺酰负离子 室温反应 1 h.置于冰浴 至内容物冻结 ,滴加碘甲烷 1 mL. 封口后在室温下 反应 1 h.用氩气将碘甲烷驱净.加水 2 mL,用氯仿 萃取甲基化产物 2 次 ,每次 1 mL ,合并氯仿层用水 洗 2 次,加无水硫酸钠过夜,过滤除去无水硫酸钠, 减压蒸去氯仿,真空干燥得到暗黄色的甲基化产 物 经红外光谱确认样品甲基化完全后,加甲酸 1 mL ,充氩气封管 , 100 ℃水解 6 h ,除去甲酸 . 再加 2 moL/L TFA 1 mL ,充氩气封管 ,100 ℃水解 6 h ,减 压蒸干.加甲醇蒸干除尽 TFA.加水 2 mL,加5 mg NaBH4 , 室温反应 5 h , 用 0.1 moL/L 醋酸中和后蒸 干 加甲醇蒸干除尽 BO4.减压干燥过夜.加无水吡 啶 1 mL ,无水醋酸酐 1 mL ,封管于 100 ℃反应 1 h. 用玻璃棉滤去不溶物,减压蒸干.加0.5 mL氯仿溶 解 即可进行气质联机(GC-MS)分析 61. GC-MS 分析 仪器操作条件:OV225 石英毛细管柱,填充柱(0.22 mm×25 m). 程序升温 50 ℃→230 ℃,升温速率 20 ℃/min, EI源, 70 eV.
- 1.2.6 高碘酸氧化及 Smith 降解 取 LBPS-I 10 mg, 加0.015 moL/L高碘酸钠 20 mL, 4 ℃暗处进行氧化 反应, 分光光度法(223 nm)间断检测反应过程, 待反应完全后,按文献 7 所述方法处理反应液, 经完全酸水解、NaBH₄还原、乙酰化后, 进行 GC 分析.
- 1.2.7 IR、 1 H-NMR 及 13 C-NMR 光谱分析 取 LBPS-I 1 mg 与 KBr 压片后在 170 SX 红外光谱仪常规测定. 另取 LBPS-I 3 0 mg 溶于 $^0.5$ mL 1 0 中 测定 1 H-NMR 及 13 C-NMR.
- 1.2.8 LPBS-I 的抗肿瘤活性评价 取小鼠体内传 代的 B16 黑色素瘤细胞或 Lewis 肺癌细胞瘤块,称

重,分别用 RPMI 1640 培养液稀释,制成 20 g/dL (B16)和 10 g/dI(Lewis)的细胞悬液,0.2 mL/只,接种于试验组 C57BL/6 小鼠右前肢腋部皮下.接种后24 h 开始每天分别给予一定量的多糖受试物 1 次,对照组给予等量的生理盐水,连续 8 d,结束后,颈椎脱臼处死小鼠,先称体重,再小心剥出肿瘤组织并称重,按下式计算体内肿瘤抑制率:

抑制率 =[对照组瘤重(g) = 实验组瘤重(g)]÷ 对照组瘤重(g)

2 结果与讨论

2.1 LBPS-I 的化学结构

2.1.1 纯度及相对分子质量 百合块茎粉碎后经 热水浸提、乙醇沉淀、脱蛋白得 LBPS 粗多糖. 经 DEAE-纤维素离子交换色谱及 Sephadex G-100 柱色 谱进一步分离纯化,得到灰白色无定形粉末状多糖 LBPS-I. 取 10 mg LBPS-I 溶解后经 Sepharose CL-6B柱色谱,得到其洗脱曲线是一对称的单一 峰 证明 LBPS-I 已是均一多糖.元素分析此多糖不含氮 ,比旋光度 α $^{10}_{0}$ = +192.3(c 0.75 , $H_{2}O$) 特性 粘度 η]= 14.06 × 10⁻³ mL/g ,凝胶色谱法测得其重均分子式量为 30 200.

2.1.2 糖组成 LBPS-I 经完全酸水解,产物用 PC 法检测发现只有葡萄糖的斑点,说明 LBPS-I 是一种葡聚糖 图 1a 是标准单糖的糖腈乙酸酯衍生物的 GC 图,按出峰的先后依次为鼠李糖、岩藻糖、阿拉伯糖、木糖、甘露糖、葡萄糖、半乳糖和内标肌醇.图 1b 是 LBPS-I 完全水解物的糖腈乙酸酯衍生物的 GC 图,只有一个峰,证明 LBPS-I 是由葡萄糖组成.

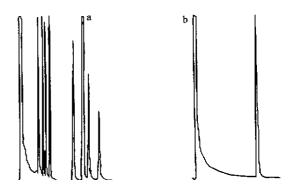


图 1 LBPS-I 的糖组成 GC 分析

Fig.1 Sugar composition GC analysis of LBPS-I 2.1.3 连接方式 甲基化产物水解、还原、乙酰化后进行 GC-MS 分析 ,数据与文献 6 对照 ,结果见表 1.

表 1 LBPS-I 甲基化分析结果

Tab.1 The results of methylated analysis of LBPS-I and its hydrolysates

Methylated-sugar	Ratioa ¹⁾	Time/min ²)	MS main fragments(m/z)	Linkages type
2 3 A 6-Me ₄ -Glc	2.1	1.00	43	Glc-(1→
2 A 6-Me ₃ -Glc	9.3	1.82	43	→3)·Gle-(1→
2	5.2	2.22	43 87 99 ,101 ,117 ,129 ,189 ,233	→6)·Glc•(1→
2 3 6-Me ₃ -Glc	18.4	2.32	43	→4)·Glc-(1→
2 A-Me ₂ -Glc	1	4.21	43 59 87 ,101 ,117 ,129 ,189 ,233	→3 6)-Glc(1→
$2 3-Me_2-Glc$	1	4.50	43 85 87 99 ,101 ,117 ,127 ,159 ,161 ,201 ,261	→4 6) Glc(1→

注:1) Molar ratio ; 2) Retention time are relative to 2 \upbeta \upbeta \upbeta . Retention time are relative to 2 \upbeta \upbeta \upbeta .

由表 1 可知 ,LBPS-I 是以 1 4-和 1 3-连接的葡萄糖残基(2:1)为主链,在 6-位连有短的 1 6-分支. LBPS-I 经高碘酸氧化,每摩尔己糖残基消耗 IO4-0.838 3 mol ,生成甲酸 0.302 6 mol . Simth 降解产物经 GC 分析 ,发现主要为赤藓醇和葡萄糖 ,以及少量的甘油 .赤藓醇是 1 4 6-和 1 4-葡萄糖残基的降解产物 ,葡萄糖是 1 3 6-和 1 3-葡萄糖残基的降解产物 ,而甘油是 1 6-葡萄糖残基的降解产物 ^{8]}.这与甲基化分析的结果基本吻合 .图 2 是 LBPS-I 的 ¹³C-NMR 图谱 经与文献 9 ,10]比较 将其碳信号归于表 2.万方数据

表 2 LBPS-I 的¹³C-NMR 化学位移归属

Tab.2 Assignment of ¹³C-NMR chemical shifts of LBPS-I

c :1	Chemical shifts						
Sugar residus	C_1	C_2	C ₃	C ₄	C_5	C ₆	
α (1→3)Glc	101.9	73.1	82.2	72.6	75.1	62.9	
α-Gld (1→3)→	101.8	73.1	82.5	72.4	75.9	62.9	
α-Gld(1→4)→	102.5	74.1	72.9	79.6	75.9	62.9	
α-Glc-(1→4 β) α-Glc-(1→3 β)	100.4	71.3	72.9	74.3	76.1	68.2	

收峰表示 LBPS-I 中的糖环构型为吡喃型(呋喃型糖环在此区间上只有两个强吸收峰),而924.71 $\rm cm^{-1}$ 的吸收峰是 $\rm D$ -吡喃葡萄糖的非对称环伸缩振动的特征吸收峰 $\rm ^{11}$].

2.2 LBPS-I 的抗肿瘤活性

由表 3 可以清楚地看出 ,等于或高于 50 mg/kg 剂量的 LBPS-I 对 B16 黑色素瘤和 Lewis 肺癌的抑制效果都达到了显著以上水平 ,中等剂量(150 mg/kg)作用最佳 ,抑瘤活性呈量效相关.

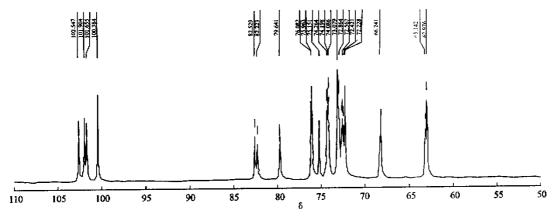


图 2 LBPS-I 的¹³C-NMR 图谱

Fig. 2 13 C-NMR spectrum of LBPS-I

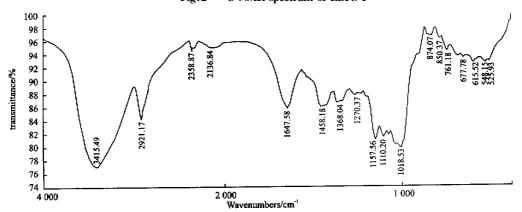


图 3 LBPS-I 的红外光谱图

Fig. 3 4-14 IR spectrum of LBPS-I

表 3 LBPS-I 的抗肿瘤活性

Tab.3 Inhibitory effect of LBPS-I on cancer cell in mice in vivo

Cancer kind	Dose/ (mg/kg)	Tumor weight $(\overline{X} \pm S)$ /mg	Inhibitory rate/%	Cancer kind	Dose/ (mg/kg)	Tumor weight $(\overline{X} \pm S)$ /mg	Inhibitory rate/%
Melanoma	0	$1\ 447 \pm 143$		Lewis lung	0	1882 ± 147	_
B16	50	$1\ 137 \pm 147^{1}$	21.4	Cancer	50	$1\ 403 \pm 114^{2}$	25.5
	150	$874 \pm 69^{2)3}$	39.6		150	$1\ 124 \pm 144^{2)3}$	40.3
	250	993 ± 187^{2}	31.4		250	$1\ 235 \pm 100^{2}$	34.4

注:1) P < 0.05 compared with Normal control group 2) P < 0.01 compared with Normal control group;3) P < 0.05 compared with Low dose group.万方数据

3 结 论

1)经水提取、乙醇沉淀、柱色谱分离获得了均一的 LBPS-I 多糖,该多糖是一种纯粹的非淀粉类葡

聚糖 ,是由 α -D(1 A)-Glep 和 α -D(1 A)-Glep 以 2:1 的比例交替形成主链 ,并有 α -D(1 ,6)-Glep 侧链的葡聚糖.

2) 鼠移植性实体瘤研究表明 ,LBPS-I 对移植性 黑色素 B16 和 Lewis 肺癌有较强的抑制作用.

参考文献:

- [1]李卫民 孟宪纾.中药百合的研究概况[J].中草药,1991,22(6):277 279.
- [2] 侯秀云 陈发奎.百合化学成分的分离与结构鉴定 J]. 药学学报 ,1998 23(12) 923 926.
- [3]姜茹 匡永清 吴少华.百合免疫活性多糖的分离及其组成 J].第四军医大学学报 ,1998 ,19(2):188.
- [4]张继敏 匡永清 吴少华等.百合多糖对小鼠免疫功能的影响 J].中国中医药科技,1996 3(5):15-17.
- [5] 李志孝 刘方明 陈耀祖.鬼臼葡聚糖的化学结构[J].化学学报 ,1996 ,54 :1037.
- [6] BJORMDAL H , LINDBERG B , SVENSSON S. Mass spectrometry of partially methylated additol acetates J]. Carbohydr Res , 1967 , 5:433 – 440.
- [7] WHISTER R L. Methods in carbohydrate chemistry M]. New York and London: Acadenic Press ,1965.2-23.
- [8] ASPINALL G O , FERRIER R J. A spectrophtomertic method for the determination of periodate consumed during the oxidation of carbohydrates J. Chem Ind (London), 1957(7):1216 1221.
- [9] AGRAWAL P K. NMR spectroscopy in the structural elucidation of oligosaccharides and goycosides [J]. Phytochemistry , 1992 ,32
 (10) 3307 3330.
- [10] GORIN P A J. Carbon-13 nuclear magnetic resonance spectroscopy of polysaccharides [J]. Adv Carbohydr Chem Biochem , 1981 ,38: 13 39
- [11] 张惟杰.复合多糖生化研究技术[M].杭州 浙江大学出版社 ,1994.324 340.

(责任编辑:秦和平)

(上接第61页)

内过氧化氢的用量从 1987 年的 82 万吨增长到 1995 年的 195 万吨 ,而美国从 1991 年的 11.5 万吨增长到 1999 年的 22 万吨 ²¹. 而利用过氧化氢酶快速去除过氧化氢不仅完全 ,节约用水和能源 ,缩短工艺时间 ,而且不会生成硫酸盐或氮盐等有害物质 ,且酶本身是生物可降解材料 ,有利于保护环境 . 纺织

品和纸浆的漂白都是在 70~95 ℃的高温条件下完成的 ,而所获得的重组酶的良好热稳定性将使得漂白结束后不需用水清洗 ,直接在位清除过氧化氢成为可能.重组酶的良好贮存稳定性也是其商品化的一大优势.因此 ,所获得的重组酶就其性质来说有商品化的潜力.

参考文献:

- [1]周一 ,严自正 ,卢运玉等.耐热过氧化氢酶产生菌的筛选和发酵条件的研究 J]. 微生物学报 ,1990 ,30(3) 223 227.
- [2] PATRICK DHAESE. Catalase: An enzyme with growing industrial potentia [J]. Chimica Oggi ,1996 14(1):19 21.
- [3] SUVIT LOPRASERT, SEIJI NEGORO, HIROSUKE OKADA. Thermostable peroxidase from *Bacillus stearothermophilus*[J]. **Journal of General Microbiology**, 1988, 134:1971 1976.
- [4] ALLGOOD G S, PERRY J J. Characterization of a manganese-containing catalase from the obligate thermophile *Thermoleophilum album* [J]. **J Bacteriology**, 1986, 168(2) 563 566.
- [5] MASAYUKI KAGAWA, NORIYUKI MURAKOSHI, YASUSHI NISHIKAWA, et al. Purification and cloning of a thermostable manganese catalase from a thermophilic bacterium [J]. Archives of Biochemistry and Biophysics 1999 362(2) 346 355.
- [6] AEBI H E. CATALASE. Methods of Enzymatic analysis M]. Weinheim: Verlag Chemie , 1983.

(责任编辑:李春丽 朱 明)