Vol. 22 No. 5 Sep. 2003

文章编号:1009-038X(2003)05-0072-04

示波极谱法测定食品中的二氧化硫

张 添 , **周心怡** , 于 涛 (江南大学 食品学院 江苏 无锡 214036)

摘 要:研究了 SO_2 在示波极谱滴汞电极上的电极行为,结果表明,在磷酸酸性介质中 SO_2 在滴汞电极上于 $-0.44\sim-0.46$ V处有一吸附波,其波高与底液中的 SO_2 质量分数在 $5.0\sim100$ mg/kg 范围内有良好的线性关系.采用在底液中添加铁离子的方法抑制氧波干扰,并对 10 个试样中的 SO_2 进行了测定,RSD 为 1.11% 样品回收率为 $93.2\%\sim101.2\%$.

关键词:示波极谱;滴汞电极 SO2 氧波

中图分类号: O 657.14 文献标识码: A

Determination of Sulfur Dioxide in Food by Oscilloscopic Polarography

ZHANG Tian, ZHOU Xin-yi, YU Tao

(School of Food Science and Technology, Southern Yangtze University, Wuxi 214036, China)

Abstract: Electrochemical behavior of sulfur dioxide in pH 4.5 phosphate solution containing Fe³⁺ ion was investigated by oscilloscopic polarography. Sulfur dioxide had an irreversible wave with peak potential at -0.45V (vs. SCE). A linear relationship between the peak height and sulfur dioxide concentration exists in the range of $5\sim100~\mu\text{g/mL}$. Fe³⁺ ion was added into the detecting solution to eliminate the disturbance from oxygen polarization. The SO₂ concentrations in ten samples were detected by this method. RSD is 1.11%, the recovery yield is $93.2\%\sim101.2\%$, and the detection limit is 7.81×10^{-5} mol/L.

Key words: oscilloscopic polarography idropping mercury electrode isulfur dioxide ioxygen polarization

二氧化硫及亚硫酸盐类具有漂白、抗氧化、防腐等作用,作为食品添加剂,在食品工业中的应用十分广泛,但过量使用会对人类健康造成危害. FAO/WHO 规定人体每日允许的 SO_2 摄入量为 $0.35\sim1.50$ mg/kg(以 SO_2 计 1^{11} ,建立一种快速、灵敏、简便的测试方法十分重要. 目前,国内广泛使用四氯汞钠-副玫瑰苯胺比色法测定食品中 SO_2 的残留量 12 ,但测定过程中需使用剧毒的氯化高汞且操作步骤复杂. 作者依据 SO_2 在滴汞电极上的特性 $^{4.51}$ 采用示波极谱法测定了蘑菇罐头、白葡萄

酒、奶糖、果葡糖浆等 10 个样品中的 SO_2 质量分数 取得了较好的效果. 结果表明 RSD 为 1.11%, 回收率在 $93.2\%\sim101.2\%$. 与副玫瑰苯胺比色法进行对照试验 结果显示无显著性差异.

1 材料与方法

1.1 材料和仪器

1.1.1 试剂 0.1 mol/L NaOH 溶液;100 g/L EDTA溶液;0.1 mol/L 碘溶液;0.1 mol/L 硫代硫酸钠标准溶液;SO₂ 吸收液(478 mL 0.1 mol/L 的

收稿日期 2003-03-07; 修回日期 2003-04-14. 作者简介:涨添(1959-),男,江苏无锡人,工程师.

万方数据

NaOH 溶液中加入 100 g/L 的 EDTA 2 mL 和甘油 20 mL 混匀);10 mg/L SO₂ 标准储备液(称取16.10 g NaHSO₃ ,用 200 mL 水溶解并用 0.1 mol/L NaOH 溶液稀释至 1 L ,用碘量法标定);10 mg/mL 的 Fe^{3+} 溶液(准确称取三氯化铁 4.841 g ,滴加适量 盐酸,用水溶解并定容至 100 mL);pH 4.5 缓冲液 (称取磷酸氢二钠 15.71 g ,柠檬酸 11.74 g ,溶于 1 L 水中摇匀,用磷酸调至 pH 4.5),廷油、甘油、磷酸等试剂均为分析纯,水为蒸馏水.

1.1.2 仪器 JP-1A 示波极谱仪(三电极系统:工作电极为滴汞电极,参比电极为饱和甘汞电极、辅助电极为铂片电极):成都分析仪器厂产品;pHs-3型精密酸度计:上海雷磁分析仪器厂产品;二氧化硫蒸馏装置:无锡红光玻璃仪器厂产品.

1.2 实验方法

1.2.1 样品处理 对于固体样品 因试样中存在干 扰测定的蛋白质并且部分 SO2 以结合态存在 ,必须 进行蒸馏. 处理方法如下:称取一定量样品(含 SO) 50 μg 以上) 粉碎或溶解后转入 250 mL 蒸馏瓶中, 加 50 mL 水 连接蒸馏装置各部件 ,加 SO₂ 吸收液 40 mL;从蒸馏器加液口加入 5.0 mL磷酸,关闭加 液口 通氮气 控制 N₂ 流量在 0.5 L/min 加热蒸馏 瓶并控制温度在 40~45 ℃ ,温度到达 40 ℃时开始 计时 20 min 以后 ,停止加热 ,关闭氮气源 ,取下吸 收管 将吸收管内吸收液全部转入 50 mL 容量瓶 中,并用少量水冲洗吸收管,合并;加入2滴甲基橙 指示剂,用磷酸调至橙红色,加入5 mL含 Fe3+的 pH 4.5 缓冲液,并用水定容,摇匀.对于液体样品, 如蛋白质含量低(葡萄酒、果酒、糖浆等)可直接取 样加入 pH 4.5 缓冲液定容后测定;如蛋白质含量 高 则须蒸馏后方可测定.

1.2.2 测定方法 SO_2 的定量采用一次标准加入法,可避免标准测定和样品测定时底液组成不同造成的偏差. 具体操作如下:取已处理好的样品液 10.0~mL,用拟定方法测定波高 h 根据波高准确加入对应的 SO_2 标准液 V_8 . 用同样的方法测定加入标准液后的波高 H,用以下计算公式计算出样品中 SO_2 的质量分数:

$$C_{\mathbf{X}} = \frac{V_{\mathcal{S}} \times C_{\mathcal{S}} \times h \times V_{\mathbf{f}} \times 1000}{(H - h) \times V_{0} \times m_{\mathbf{f}} \times 1000}$$

式中 $C_{\rm X}$ 为被测试样中 SO_2 的质量分数(mg/kg); $V_{\rm S}$ 为添加的 SO_2 标准溶液的体积(μL);

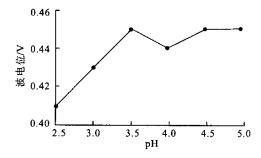
 $C_{
m S}$ 为添加的 SO_2 标准溶液的质量分数 (mg/kg);

h 为莱森勒塔O₂ 标准溶液时测得的试样 SO₂

的波高(mm);

H 为添加 SO_2 标准溶液后测得的 SO_2 波高 (mm);

 $V_{\rm ff}$ 为蒸馏吸收液或液体样品定容的体积 ($\rm mL$);


 V_0 为极谱扫描时底液的体积(mL);

 $m_{\rm f}$ 为样品蒸馏或直接取样时的取样质量(g).

2 结果与讨论

2.1 实验条件选择

2.1.1 底液最佳 pH 值选择 吸取 10 mg/mL 标准 SO_2 溶液 0.1 mL ,含 Fe^{3+} 的 pH 值 4.5 缓冲液 10 mL 加入 30 mL 水混合 ,用磷酸或氢氧化钠溶液调节 pH 值. 分别配成 pH 值为 $2.5\sim5.0$ 的系列溶液 ,然后将溶液转入 50 mL 容量瓶中 ,以水定容. 将各溶液分别在示波极谱仪上于 $0\sim-0.65$ V 范围内记录 SO_2 的波值和波电位 ,结果见图 1. 说明在 pH 值为 $4.0\sim5.0$ 范围内 ,波高和波电位基本稳定 ,故底液的 pH 值为 4.5.

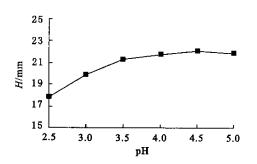
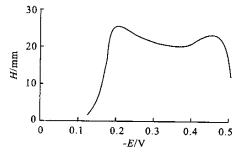
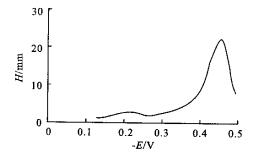



图 1 底液酸度和 SO2 波高及波电位的关系


Fig. 1 Relationship between substrate acidity and peak height peak potenial

2.1.2 氧波的干扰与抑制 测试液中的溶解氧对 SO_2 的测定有干扰. 一般极谱分析除氧的方式为通 氮气或添加亚硫酸盐 这两种方式对测定 SO_2 都不适合. 作者在测试液中添加少量 Fe^{3+} 抑制氧波的产生 结果见图 2. 当 SO_2 质量分数低于 5 mg/kg 时,氧波对 SO_2 的测定有明显的干扰 ,添加 $50~\mu g/mL$

的 Fe³⁺可抑制氧波的产生、保证 SO₂ 测定的精度

a. 5 mg/kg SO₂ 极谱扫描的波形

 $_{\rm b.5~mg/kg}$ $_{\rm SO_2}$ 添加 $_{\rm 50~\mu g/mL}$ $_{\rm Fe^{3+}}$ 后的极谱扫描的波形图 $_{\rm 2}$ 氧波对 $_{\rm SO_2}$ 测定的干扰及干扰的抑制

Fig. 2 Oxygen disturbance the elimination of oxygen disturance

2.1.3 蒸馏条件的选择 在 50 mL 蒸馏液中分别添加 2 A 6 8 10 mL 磷酸 测定磷酸加入量与蒸馏回收率的关系 ,结果表明在 20 mL 蒸馏液中加入 5.0 mL 磷酸已能保证 SO_2 与试样分离 ,故确定磷酸的加入量为5.0 mL 蒸馏温度在 $30 \sim 60 \text{ \mathbb{C}}$ 范围内蘑菇罐头的 SO_2 回收率实验表明 在 $40 \text{ \mathbb{C}}$ 以上 ,蒸馏 20 min ,试样中 SO_2 已可全部逸出 在 N_2 流量为 $0.2 \sim 1.0 \text{ L/min}$ 范围内测定蘑菇罐头试样的回收率 结果表明 ,通入 N_2 流量达到 0.5 L/min 以上时 样品回收率达到了稳定状态 ,故选择通 N_2 流量为 0.5 L/min

2.1.4 线性范围的选择 分别用 $100~\mu$ L 微量进样器吸取 $5.0~,20.0~,40.0~,60.0~,80.0~,100.0~\mu$ L 10~mg/mL 的 SO_2 标准液置于 10~mL 容量瓶中 ,用~pH 4.5 的磷酸盐缓冲液定容 ,摇匀 . 于选定条件下在 0~-0.6~V 进行扫描 ,测定 -0.45~V 处的 SO_2 波高值 结果见图 3~,显示 SO_2 质量分数在 5~100~mg/kg范围内具有良好的线性关系 .

2.2 样品测定结果

采用示波极谱法测定了蘑菇罐头、奶糖、果葡糖浆、白葡萄酒、竹笋罐头等 5 种样品 10 组数据.每个数据均为 6 次测试结果的平均值.与副玫瑰苯胺比色法进行了对照 测试了回收率并进行了重复性试验 结果贮数据2.

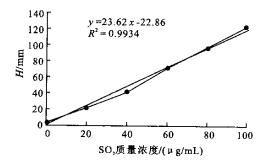


图 3 SO₂ 质量分数与波高的关系

Fig. 3 Relationship between the SO₂ concentration and peak height

表 1 样品测定结果

Tab.1 Result of sample detecting

样品名称 一	SO_2 质量分数 ℓ $\mathrm{mg/kg}$)		
作四百秒 —	示波极谱法	苯胺比色法	
蘑菇罐头1	54.40	53.21	
蘑菇罐头 2	87.55	85.69	
大白兔奶糖	46.34	43.28	
乳脂糖	54.44	52.53	
果葡糖浆	331.5	_	
麦芽糖浆	458.2	_	
通化白葡萄酒	37.91	_	
芦笋罐头	37.62	_	
竹笋罐头	33.66	32.81	
长城白葡萄酒	39.27	36.90	

表 2 样品平行测定结果

Tab. 2 Results of recovery experiments and detecting repeatability

测定次数	回收率/%	SO ₂ 质量分数/(mg/kg)
1	93.2	54.40
2	94.1	54.81
3	94.3	53.95
4	95.0	55.10
5	94.7	54.87
6	101.2	53.54

检测结果说明两个蘑菇罐头含量都有超标现象.果葡糖浆和麦芽糖浆中 SO_2 的残留量严重超标,应引起有关部门的重视.重复性试验结果说明测定结果的重现性良好,对照试验结果显示两方法无显著性差异($\alpha=0.05$).副玫瑰苯胺比色法测定

结果总体稍低,可能是部分结合 SO₂ 未检出所致. 回收率试验显示本方法的回收水平符合仪器分析 的要求.

2.3 讨论

- 1)采用本方法测定样品中 SO_2 质量分数时 ,为确保准确度以及操作方便 ,其取样量应使底液中 SO_2 质量分数尽量在 $20\sim50$ mg/kg 为好.
- 2)在夏季平均气温超过 28 % 时 ,为防止样品蒸馏时吸收液中 SO_2 逸出 ,吸收装置应置入冰水浴或循环自来水浴中 ,其它季节则无必要.
- 3)测定含气液体样品中 SO_2 质量分数时 ,可先将样品液调成碱性后再除气 ,以防 SO_2 损失.
 - 4)在测定高糖食品中SO2时蒸馏瓶中的加水

量可增加至 100 mL 并滴加硅油 ,以防糖炭化或泡沫逸出。

3 结 论

 SO_2 在 pH 4.5 的磷酸酸性介质中在滴汞电极上有良好的吸附波 SO_2 质量分数在 $5.0 \sim 100$ mg/kg 范围内 ,与波高有良好的线性关系. 添加 $50~\mu$ g/mL 的 Fe^{3+} 可抑制氧波对 SO_2 测定的干扰. 用此法测定了 10 个试样中的 SO_2 质量分数 ,RSD 为 1.11% ,回收率在 $93.2\% \sim 101.2\%$. 与国家标准分析方法副玫瑰苯胺比色法进行了对照 ,结果显示无显著性差异($\alpha=0.05$). 该方法操作简便 ,测定速度快 结果重现性好.

参考文献:

- [1]凌关庭,王亦芸,唐述潮,等. 食品添加剂手册[M]. 北京:化学工业出版社,1998. 311-316.
- [2]中国预防医学科学院标准处. 食品卫生国家标准汇编(4]M]. 北京:中国标准出版社 ,1997.342-343.
- [3]中国预防医学科学院标准处. 食品卫生国家标准汇编(5]M]. 北京:中国标准出版社 ,1999.19-21.
- [4]孙成均,刘纪艳,王崧,等. 示波极谱法测定血清和组织中的亚硝酸盐[J]. 华西医科大学学报,1999,30(2)945-946.
- [5]张军 黎拒难. 单扫描示波极谱法测定安乃近含量[]]分析科学学报,2000,16(1)234-236.

(责任编辑:朱明)

(上接第65页)

参考文献:

- [1]绪方邦安. 水果蔬菜贮藏概论[M] 陈租绒 李克志 高燕 筹译.北京 农业出版社 ,1982.
- [2]赵大生 吴全龙 郭树滋. 食品感官检查方法浅探]]. 食品科学 ,1984 (3) 35-37.
- [3]杨寿清 陈舜祖. 苹果香精回收技术[1].无锡轻工业学院学报 ,1987 £(4)28-37.
- [4] Walker L H, Nimmo C C, Patterson D C. Preparation of a frozen apple juice concentrate J J. Food Technol, 1951 (5):148 150.
- [5] Mannheim C H, Passy N. Aroma recovery and retention in fruit juice J]. Int Flavors Food Additives, 1975 (6) 323 327.
- [6] Herz K O, Chang S S. An apparatus for the isolation of volatile compounds from foods J] J Food Sci ,1966 (31) 397 402.
- [7] Williams A A ,Lewis M J , Tucknott O G. The neutral volatile components of cider apple juic [J]. Food Chem ,1980 (6):139 141.
- [8] Hachenbery H, Schmidt AP. Gas Chromatographic Headspace Analysis M. London Heyden, 1977.
- [9] Tressler D J, Joslyn M J. Fruit and Vegetable Juice Processing Technology. 3rd ed M]. Westport Connecticut AVI Publishing Company 1980.
- [10] Bennet GB Spahr M, Dodds ML. The value of training a sensory test pane [J]. Food Technol, 1956 (10) 205 208.
- [11] Tigner D.J. Dilution test for odor and flavor analysis J.]. Food Technol ,1962 (2) 26-29.

(责任编辑:杨勇)