基于特征融合的猪肉新鲜度高光谱图像检测
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


Feature Fusion for Detection of Pork Freshness Based on Hyperspectral Imaging Technology
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    利用高光谱反射图像技术研究了猪肉新鲜度的无损检测。采集了180个猪肉样本在400~1 000 nm范围内的高光谱反射图像,提取了高光谱图像的光谱均值和熵两类特征;分别利用连续投影算法、主成分分析,以及连续投影算法结合主成分分析3种特征降维方法,提取了反映肉类新鲜度信息的重要特征变量;并建立了这些特征变量与挥发性盐基氮(TVB-N)的最小二乘支持向量机(LSSVM)预测模型;在此基础上提出了猪肉TVB-N含量的可视化检测方法。研究结果表明:相比于单一特征模型,利用光谱均值和熵融合特征的LSSVM模型可显著提高模型的准确度;连续投影算法结合主成分分析的特征降维方法,可显著降低模型的复杂度,提高模型准确度。利用光谱均值和熵两类特征,通过连续投影算法和主成分分析相结合的特征降维方法所建立的LSSVM预测模型,可取得最佳的预测准确度,其预测集的均方根误差RMSEP为1.96,相关系数(RP)为0.948,剩余预测偏差(RPD)为3.12,可满足实际检测需要。建立在此基础上的可视化方法,可直观显示肉类的腐败区域和程度。

    Abstract:

    It is of great importance for quick and nondestructive detection of meat freshness to ensure the quality of meat products and reduce the risks of food safety accidents. In this manuscript,the hyperspectral imaging technology has been used to study the nondestructive detection of pork freshness. The hyperspectral reflectance images between 400 and 1 000 nm of 180 pork samples were acquired. The mean and entropy feature were calculated from the hyperspectral reflectance image. Successive Projection Algorithm(SPA),Principal Component Analysis(PCA),and SPA combined with PCA were respectively used to extract the important feature variables which reflect well the characteristics of the meat freshness. And the Volatile Base Nitrogen(TVB-N) prediction models using Least Squares Support Vector Machine (LSSVM) were developed. On this basis,a visual detection method for the TVB-N content of pork was raised. The results demonstrated that:it can significantly improve the precision of model using the fusion of the mean and entropy features;and the feature dimension reduction method of SPA combined with PCA can significantly reduce the complexity of the model,while improving the model accuracy. The LSSVM prediction model using the fusion feature of mean and entropy based on dimension reduction method of SPA combined with PCA can obtain the best prediction accuracy. The Root Mean Square Error of Prediction (RMSEP) is 1.96,and the Relevance of Prediction (RP) is 0.948. The Residual Prediction Deviation(RPD) is 3.12,which meet the needs of the actual detection for pork freshness. The visualization detection method for pork freshness can display directly and clearly the area and degree of meat corruption.

    参考文献
    相似文献
    引证文献
引用本文

朱启兵,肖盼,黄敏,尹克.基于特征融合的猪肉新鲜度高光谱图像检测[J].食品与生物技术学报,2015,34(3):246-252.

ZHU Qibing, XIAO Pan, HUANG Min, YIN Ke. Feature Fusion for Detection of Pork Freshness Based on Hyperspectral Imaging Technology[J]. Journal of Food Science and Biotechnology,2015,34(3):246-252.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2015-04-16
  • 出版日期:
文章二维码

版权所有:《食品与生物技术学报》编辑部

地址:江苏省无锡市蠡湖大道1800号  邮政编码:214122

电话:0510-85913526  电子邮件:xbbjb@jiangnan.edu.cn

技术支持:北京勤云科技发展有限公司

微信公众号二维码

手机版网站二维码