词袋模型在蛋白质亚细胞定位预测中的应用
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TP391.4

基金项目:


Application of Bag of Words Model in the Prediction of Protein Subcellular Location
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    运用词袋模型结合传统的蛋白质特征提取算法提取蛋白质序列特征,采用K-means算法构建字典,计算获得蛋白质序列的词袋特征,最终将提取的特征值送入SVM多类分类器,对数据集中蛋白质的亚细胞位置进行预测,在一定程度上提高了亚细胞定位预测的准确率。

    Abstract:

    Predecessors have done a lot of work in the feature extraction of protein and subcellular localization prediction. Previous studies showed that prediction accuracy obtained by traditional feature extraction algorithm is low. In order to improve accuracy,bag of words model combined with traditional protein features extraction algorithm is used to extract feature of protein sequence in this study. Firstly,K-means algorithm is used to construct feature dictionary. Then bag of words features of protein sequences are counted by dictionary.Finally extracted feature is inputted into SVM classifier to forecast the protein subcellular location. Results showed that predictionaccuracy of subcellular localization has been improved.

    参考文献
    相似文献
    引证文献
引用本文

赵南,张梁,薛卫,王雄飞,任守纲.词袋模型在蛋白质亚细胞定位预测中的应用[J].食品与生物技术学报,2017,36(3):296-301.

ZHAO Nan, ZHANG Liang, XUE Wei, WANG Xiongfei, REN Shougang. Application of Bag of Words Model in the Prediction of Protein Subcellular Location[J]. Journal of Food Science and Biotechnology,2017,36(3):296-301.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2017-04-28
  • 出版日期:
文章二维码

版权所有:《食品与生物技术学报》编辑部

地址:江苏省无锡市蠡湖大道1800号  邮政编码:214122

电话:0510-85913526  电子邮件:xbbjb@jiangnan.edu.cn

技术支持:北京勤云科技发展有限公司

微信公众号二维码

手机版网站二维码